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Conventions and Notation

Vectors have an arrow over their variable name: Points are denoted with a bar insteaul:
Matrices are represented by an uppercase letter.

When written with parentheses and commas separating elsjeenisider a vector to be a column

vector. That is(x;y) = § . Row vectors are denoted with square braces and no commas:

T
X

X =(x;y)" =
y (xy) y

The set of real numbers is representedrbyThe real Euclidean plane R?, and similarly Eu-
clidean three-dimensional spaceR&. The set of natural numbers (non-negative integers) is rep-
resented b\.

There are some notable differences between the conventgatsin these notes and those found
in the course text. Here, coordinates of a pqi@ire written agy, py, and so on, where the book
uses the notatior,, y,, etc. The same is true for vectors.

Aside:
Text in “aside” boxes provide extra background or inforroatthat you are not re
quired to know for this course.

Acknowledgements

Thanks to Tina Nicholl for feedback on these notes. Alex igplbulos assisted with electronic
preparation of the notes, with additional help from Pat@zkeman.
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1 Introduction to Graphics

1.1 Raster Displays

The screen is represented by a 2D array of locations cpileds.

Zooming in on an image made up of pixels

The convention in these notes will follow that of OpenGL,qgitey the origin in the lower left
corner, with that pixel being at locatidf; 0). Be aware that placing the origin in the upper left is
another common convention.

One of2N intensities or colors are associated with each pixel, wheis the number of bits per
pixel. Greyscale typically has one byte per pixel, 8r= 256 intensities. Color often requires
one byte per channel, with three color channels per pixdl:gs=en, and blue.

Color data is stored in frame buffer. This is sometimes called an image map or bitmap.

Primitive operations:

setpixel(x, y, color)
Sets the pixel at positiofx; y) to the given color.

getpixel(x, y)
Gets the color at the pixel at positi¢r; y).

Scan conversionis the process of converting basic, low level objects intirticorresponding
pixel map representations. This is often an approximatdhé object, since the frame buffer is a
discrete grid.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 1
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Introduction to Graphics

Scan conversion of a circle

L (7, 4)

{1, 2)\)_-:‘

1.2 Basic Line Drawing

Set the color of pixels to approximate the appearance okdilom (Xo; Yo) to (X1;Y1).

It should be

“straight” and pass through the end points.

independent of point order.

uniformly bright, independent of slope.

The explicit equation for aline ig= mx + b.

Note:

Given two pointgXo; Yo) and(xy;Yy:) that lie on a line, we can solve fon andbfor
the line. Considey, = mxo + bandy; = mx; + b.

Subtracty, fromy; to solve form = yl y° andb= vy, mxo.

Substituting in the value fdg, this equatlon can be written §s= m(xX  Xg) + Yo.

Consider this simple line drawing algorithm:

int x

float m, y
= (yl - y0) / (x1 - x0)

for (x = x0; x <= x1; ++x) {
y =m=* (x - x0) + y0
setpixel(x, round(y), linecolor)

}
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Problems with this algorithm:

If X, <X nothing is drawn.
Solution: Switch the order of the points ¥; < X .

Consider the cases whem< 1andm > 1:

(@m<1 (b)m> 1

A different number of pixels are on, which implies differdmightness between the two.
Solution:Whenm > 1, loop overy = yq:::Yy; instead ofx, thenx = %(y Yo) + Xo.

Inef cient because of the number of operations and the useating point numbers.
Solution: A more advanced algorithm, called Bresenham's Line DrawitgpAthm.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann
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2 Curves

2.1 Parametric Curves
There are multiple ways to represent curves in two dimeission

Explicit: y = f (x), givenx, nd y.

Example:
The explicit form of a line isy = mx + b. There is a problem with this
representation—what about vertical lines?

Implicit: f (x;y) =0, orin vector formf (p) = 0.

Example:
The implicit equation of a line througby andp; is

(X Xo)(yr Yo) (Y Yo)Xi Xo)=0:

Intuition:
— The direction of the line is the vect@r= p;  po.

— So a vector fronpg to any point on the line must be paralleldo

— Equivalently, any point on the line must have direction frpgrperpendict
ulartod® = (dy; dy) A
This can be checked witlli @ = (dy;d,) (dy; dx)=0.
— So for any poinpon theline(p py) ©n=0.
HereA=(y: VYo;Xo Xi1). Thisis called anormal.

— Finally,(p po) A=(X Xo;¥ VYo) (Y1 VYo;Xo Xi1)=0:Hence,the
line can also be written as:

(P p) N=0

Example:
The implicit equation for a circle of radiusand centep, = ( X¢; Ye) iS

(X Xc)2+(y YCZZrZ;

or in vector form,
kp pck®=r?

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 4
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Parametric: p= f ( ) wheref : R! R?, may be written ap( ) or (x( );y( )).

Example:
A parametric line througlp andp; is

pP( )=po+ &

whered'= p;  po.
Note that bounds on must be speci ed:
— Line segment fronpg to p;: O 1

— Ray frompg in the direction ofp;: O < 1.
— Line passing throughp andp;: 1 < < 1

Example:
What's the perpendicular bisector of the line segment betywgandp,?

— The midpointisp( ) where = 1, thatis,pg+ 3&= 221
— The line perpendicular tp( ) has direction parallel to the normal pf ),
whichisf=(y1 Yo; (X1 Xo))-

Hence, the perpendicular bisector is the life) = po+ 50 + 1.

NI

Example:
Find the intersection of the lingé ) = po+ doandf (p)=(p p1) B, =0.

SubstituteI( ) into the implicit equationf (p) to see what value of
satis es it:

fo10) Ppot Go P

= do A1 (Pr Po) ™
=0

Therefore, iftd, #; 6 0,

_ (P po) P,
do ; ,

and the intersection pointl¢ ). If o A, = 0, then the two lines are parallel
with no intersection or they are the same line.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 5
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Example:
The parametric form of a circle with radiudor0 < 1is

p( )=(rcos(2 );rsin(2 )):

This is the polar coordinate representation of a circle. r&rge an in nite
number of parametric representations of most curves, ssicirades. Can you
think of others?

An important property of parametric curves is that it is etmsgenerate points along a curve
by evaluatingp( ) at a sequence of values.

2.1.1 Tangents and Normals

Thetangentto a curve at a point is the instantaneous direction of theecufhe line containing
the tangent intersects the curve at a point. It is given bylérevative of the parametric forp( )
with regard to . That s,

do( ) _ dx( ). dy()

=77 9

Thenormal is perpendicular to the tangent direction. Often we norpedine normal to have unit
length. For closed curves we often talk about an inwardafa@ind an outward-facing normal.
When the type is unspeci ed, we are usually dealing with anvand-facing normal.

t(l)
n(l) tangent
normal
p(l)
curve

We can also derive the normal from the implicit form. The nakat a pointp = ( x;y) on a curve
de ned byf (p) = f(x;y) =0 is:

LCRER IO

Derivation:
For any curve in implicit form, there also exists a parancatepresentatiop( ) =

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 6
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(x( );y( )). All points on the curve
choice of , we have:

This last line states that the gradient
the de nition of the normal vector.

0=1f(x()y())
We can differentiate both side with respect to
0 = LHx( )y ) (1)
_ @fdx() , @fdy( )
0= @xd " ayd @)
_@f@f  dx().dy()
°7 @@y d ' d ©
0 = rf(j, ~() (4)

must satisfy(p) = 0. Therefore, for any

is perpendiculangocurve tangent, which js

Example:

at a point(x;y) on the circleisr f =(2

The implicit form of a circle at the origin if: (x;y) = x?+y? R?=0. The norma

X; 2y).

Exercise: show that the normal computed for a line is the saegardless of whether it is com-

puted using the parametric or implicit forms.

2.2 Ellipses

Try it for anet surface.

Implicit: 2—2 + {é = 1. This is only for the special case where the ellipse is cedtat the

origin with the major and minor axes a

ligned with= 0 andx = 0.

\

=
N

Parametric: x( )= acos(2 ), y( )=

p( )=

Copyright ¢ 2005 David Fleet and Aaron Hertzmann
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The implicit form of ellipses and circles is common becausé is no explicit functional form.
This is becausyg is a multifunction ofx.

2.3 Polygons

A polygonis a continuous, piecewise linear, closed planar curve.
A simple polygon is non self-intersecting.
A regular polygon is simple, equilateral, and equiangular.
An n-gonis a regular polygon witim sides.

A polygon isconvexif, for any two points selected inside the polygon, the liegreent
between them is completely contained within the polygon.

Example:

To nd the vertices of am-gon, nd n equally spaced points on a circle.
A

Y

In polar coordinates, each vertex;;y;) = (r cos(;);r sin( ;)), where ; = iZ for
i=0:::n L

To translate: AddXc;Yc) to each point.

To scale: Change.

To rotate: Add to each ;.

2.4 Rendering Curves in OpenGL

OpenGL does not directly support rendering any curves dtterlines and polylines. However,
you can sample a curve and draw it as a line strip, e.g.,:

float X, v;

glBegin(GL_LINE_STRIP);
for (int t=0 ; t <= 1 ; t += .01)

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 8
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computeCurve( t, &x, &y);
glVertex2f(x, y);

}
glEnd();

You can adjust the step-size to determine how many line segne draw. Adding line segments
will increase the accuracy of the curve, but slow down thelegimg.

The GLU does have some specialized libraries to assist \eieigting and rendering curves. For
example, the following code renders a disk with a hole indster, centered about tkeaxis.

GLUquadric g = gluNewQuadric();
gluDisk(q, innerRadius, outerRadius, sliceCount, 1);
gluDeleteQuadric(q);

See the OpenGL Reference Manual for more information on tleeganes.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 9
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3 Transformations

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric cunegcan use transformations for several
purposes:

1. Change coordinate frames (world, window, viewport, devetc).

2. Compose objects of simple parts with local scale/postioentation of one part de ned
with regard to other parts. For example, for articulatectotsj.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:
1. Rigid body - Preserves distance and angles.
Examples: translation and rotation.
2. Conformal - Preserves angles.
Examples: translation, rotation, and uniform scaling.
3. Afne - Preserves parallelism. Lines remain lines.

Examples: translation, rotation, scaling, shear, andatgoa.

Examples of transformations:

Translation by vectort: p; = pp + t.

Y
Y

cos() sin( )

Rotation counterclockwise by: p; = sin() cos()

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 10



CSC418/CSCD18/CSC2504 Transformations

/—>
. . .. _ ao
Uniform scaling by scalara: p; = 0 a Po
/—>
. . ] a o0
Nonuniform scaling by a andb: p; = o p Po
/—>
_ 1 h
Shearby scalath: p; = o 1 Po
. . 10
Re ection about they-axis: p;, = o 1 Po

>
V X
>
Y

3.2 Af ne Transformations

An af ne transformation takes a poinp to gaccording tag= F(p) = Ap+ t; a linear transfor-
mation followed by a translation. You should understandfétiewing proofs.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 11
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The inverse of an af ne transformation is also af ne, assoigit exists.

Proof:

Letg= Ap+ tand assumA ! exists, i.edet(A) 6 0.

ThenAp=q t,sop= A g A It This can be rewritten gs= Bq+ d,
whereB = A tandd= A t

Note:
The inverse of a 2D linear transformation is
A1- ab o1 d b
cd ad bc c a

Lines and parallelism are preserved under af ne transftiona.

Proof:
To prove lines are preserved, we must show ¢ftaj = F(I( )) is a line, where

F(p)= Ap+ tandl( )= po+ &

o ) = AI()+tT
Alp+ @+t
(App+ )+ Ad

This is a parametric form of a line throudtp, + t with directionAd.

Given a closed region, the area under an af ne transformajo+ tis scaled bydet(A).

Note:

— Rotations and translations hastet(A) = 1.

a0 _
0 b hasdet(A) = ah
— Singularities havelet(A) = 0.

— ScalingA =

Example:

The matrixA = é 8 maps all points to thg-axis, so the area of any closed

region will become zero. We hawet(A) = 0, which veri es that any close
region's area will be scaled by zero.

[oN

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 12
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A composition of af ne transformations is still af ne.

Proof:
LetFi(p) = Aip+ tg andF,(p) = Ap+ t.
Then,

F2(F1(p)
Ar(Ap+ )+ 6
A2A1p+ (Axty + T):

F(p)

Letting A = A,A; andt = A,t; + 1, we haveF (p) = Ap + t, and this is an
af ne transformation.

3.3 Homogeneous Coordinates

Homogeneous coordinateare another way to represent points to simplify the way inclvhie
express af ne transformations. Normally, bookkeeping lddeecome tedious when af ne trans-
formations of the formAp + tare composed. With homogeneous coordinates, af ne tramsfo
tions become matrices, and composition of transformat®@as simple as matrix multiplication.
In future sections of the course we exploit this in much mawerful ways.
With homogeneous coordinates, a pgris augmented with a 1, to forgh= E

All points ( p; ) represent the same poimfor real 6 0.

Givenp in homogeneous coordinates, to getve dividep by its last component and discard the
last component.

Example:
The homogeneous pointg; 4;2) and (1;2;1) both represent the Cartesian point
(1; 2). It's the orientation ofd that matters, not its length.

Many transformations become linear in homogeneous coatgsn including af ne transforma-
tions:

% _ ab p . k&
27 c d Py, 3ty
_ ab ko4
c d g ply
= AtDp

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 13
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To produceg rather tharg, we can add a row to the matrix:

3
a b t

At
G= 0T1|0=40dty5p:
0 0 1

This is linear! Bookkeeping becomes simple under compasitio

Example:

Fs(F2(F1(p)), whereFi(p) = Ai(p) + ti becomesMz;M,M1p, whereM; =
Ai T
o 1

With homogeneous coordinates, the following propertieafofe transformations become appar-
ent:

Af ne transformations are associative.
For af ne transformation$, F», andFj,

(Fs F2) Fi=Fs (F2 Fy):

Af ne transformations arenot commutative.
For af ne transformation$; andF,,

F2 F]_@ Fl FZ:

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representair Cartesian coordinates, and cannot
be treated in quite the same way. For example, consider tdpaimt between two pointg; =
(2;1) andp, = (5;5). The midpoint is(p; + p2)=2 = (3;3). We can represent these points
in homogeneous coordinates @s = (1;1;1) andp, = (5;5;1). Directly applying the same
computation as above gives the same resulting p@B)t3; 1). However, we caralso represent
these points apd = (2;2;2) andpd = (5;5;1). We then havép) + p9)=2 = (7=2; 7=2; 3=2),
which cooresponds to the Cartesian pdift3; 7=3). This is a different point, and illustrates that
we cannot blindly apply geometric operations to homogeseoordinates. The simplest solution
is to always convert homogeneous coordinates to Cartesian coongtes. That said, there are
several important operations that can be performed cdyriederms of homogeneous coordinates,
as follows.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 14
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Af ne transformations. An important case in the previous section is applying an aftrans-
formation to a point in homogeneous coordinates:

q = F(p)=Ap+t )
q = Ap=(x%%1) (6)

It is easy to see that this operation is correct, since reggraldoes not change the result:
ACp= Ap= a=(x%y% )T (7)

which is the same geometric pointés (x%y% 1)T

Vectors. We can represent a vectsr= ( x;y) in homogeneous coordinates by setting the last
element of the vector to be zerd= ( x;y; 0). However, when adding a vector to a point, the point
must have the third component be 1.

q
(%Y%)’

b+A (8)
(Xp;¥p; 1) +(X;y; 0) 9

The result is clearly incorrect if the third component of tleetor is not 0.

Aside:
Homogeneous coordinates are a representation of poiptgjective geometry.

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchicallyreected parts. For example, a robot arm
might be made up of an upper arm, forearm, palm, and ngersatitagf at the shoulder on the
upper arm would affect all of the rest of the arm, but rotatimgforearm at the elbow would affect
the palm and ngers, but not the upper arm. A reasonable tubyathen, would have the upper
arm at the root, with the forearm as its only child, which imtaonnects only to the palm, and the
palm would be the parent to all of the ngers.

Each part in the hierarchy can be modeled in its own localdioates, independent of the other
parts. For a robot, a simple square might be used to modeladatle upper arm, forearm, and

so on. Rigid body transformations are then applied to eachrpkative to its parent to achieve

the proper alignment and pose of the object. For examplentiess are positioned to be in the

appropriate places in the palm coordinates, the ngers ata pogether are positioned in forearm
coordinates, and the process continues up the hierarchgn ahransformation applied to upper
arm coordinates is also applied to all parts down the hiagarc
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3.6 Transformations in OpenGL

OpenGL manages twé 4 transformation matrices: thmodelview matrixand theprojection
matrix. Whenever you specify geometry (usigtyertex ), the vertices are transformed by the
current modelview matrix and then the current projectiotrimaHence, you don't have to perform
these transformations yourself. You can modify the entsfédbese matrices at any time. OpenGL
provides several utilities for modifying these matriceBeTmodelview matrix is normally used to
represent geometric transformations of objects; the ptioje matrix is normally used to store the
camera transformation. For now, we'll focus just on the ntaiéder matrix, and discuss the camera
transformation later.

To modify the current matrix, rst specify which matrix is g to be manipulated: uggMatrixMode(GL
to modify the modelview matrix. The modelview matrix canritie initialized to the identity with
glLoadldentity() . The matrix can be manipulated by directly lling its valyesultiplying it

by an arbitrary matrix, or using the functions OpenGL pregdo multiply the matrix by speci ¢
transformation matriceglRotate , glTranslate , andglScale ). Note that these transforma-
tions right-multiply the current matrix; this can be confusing since it means ybat specify
transformations in the reverse of the obvious order. Egercivhy does OpenGL right-multiply
the current matrix?

OpenGL provides atacksto assist with hierarchical transformations. There is daeksfor the
modelview matrix and one for the projection matrix. OpenGbvides routines for pushing and
popping matrices on the stack.

The following example draws an upper arm and forearm withukley and elbow joints. The
current modelview matrix is pushed onto the stack and poppdde end of the rendering, so,
for example, another arm could be rendered without the fibamstions from rendering this arm
affecting its modelview matrix. Since each OpenGL transition is applied by multiplying a
matrix on the right-hand side of the modelview matrix, tr@nsformations occur in reverse order.
Here, the upper arm is translated so that its shoulder possi at the origin, then it is rotated,
and nally it is translated so that the shoulder is in its agprate world-space position. Similarly,
the forearm is translated to rotate about its elbow positiben it is translated so that the elbow
matches its position in upper arm coordinates.

glPushMatrix();

glTranslatef(worldShoulderX, worldShoulderY, 0.0f);

drawShoulderJoint();

glRotatef(shoulderRotation, 0.0f, 0.0f, 1.0f);
glTranslatef(-upperArmShoulderX, -upperArmShoulderY, 0.0f);
drawUpperArmShape();

glTranslatef(upperArmElbowX, upperArmElbowY, 0.0f);
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drawElbowJoint();

glRotatef(elbowRotation, 0.0f, 0.0f, 1.0f);
glTranslatef(-forearmElbowX, -forearmElbowY, 0.0f);
drawForearmShape();

glPopMatrix();
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4 Coordinate Free Geometry

Coordinate free geometry(CFG) is a style of expressing geometric objects and relsttbat
avoids unnecessary reliance on any speci ¢ coordinatesysRepresenting geometric quantities
in terms of coordinates can frequently lead to confusiod, tarderivations that rely on irrelevant
coordinate systems.

We rst de ne the basic quantities:

1. Ascalaris just a real number.
2. Apoint is a location in space. ttoes nohave any intrinsic coordinates.

3. Avectoris a direction and a magnitude.does nohave any intrinsic coordinates.

A point is not a vector: we cannot add two points together. Aot compute the magnitude of
a point, or the location of a vector.

Coordinate free geometry de nes a restricted class of ojmermbn points and vectors, even though
both are represented as vectors in matrix algebra. ThesMwoitpoperations are thenly operations
allowed in CFG.

1. k~vk: magnitude of a vector.

2. p1+ V= P, Or¥ = P Piii point-vector addition.
3. ¥ + % = A5l vector addition
4

. ¥ 1 = ¥ vector scaling. If > 0, thenv, is a new vector with the same directionasbut
magnitude kwvik. If < 0, then the direction of the vector is reversed.

o

¥ . dot product kv, kkwk cos( ), where is the angle between the vectors.

6. ¥1 W: cross product, wherg andw, are 3D vectors. Produces a new vector perpedicular
to v, and tow,, with magnitudekv, kkxk sin( ). The orientation of the vector is determined
by the right-hand rule (see textbook).

P

7. ; i® = ¥ Linear combination of vectors
P P

8. , ip=pif , ;=1:afnecombination of points.
P . P

9. i k=Y if T 0
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Example:

PpL+ (P2 P3)= pr+ ¥= pa.
P2 Pr= ¥1= %
T+ )= Pt 3P P)= Pt 2v= pa

Note:
In order to understand these formulas, try drawing someigstto illustrate differer
cases (like the ones that were drawn in class).

—

Note that operations that anetin the list are unde ned.

These operations have a number of basic properties, ergmatvity of dot product:v, w =
A, W, distributivity of dot product;, (% + %) = ¥ W+ v .

CFG helps us reason about geometry in several ways:

1. When reasoning about geometric objects, we only care dbeuntrinsic geometric prop-
erties of the objects, not their coordinates. CFG preventsams introducing irrelevant
concepts into our reasoning.

2. CFG derivations usually provide much more geometric fimmifor the steps and for the
results. It is often easy to interpret the meaning of a CFG fteswhereas a coordinate-
based formula is usually quite opaque.

3. CFG derivations are usually simpler than using coordgaimce introducing coordinates
often creates many more variables.

4. CFG provides a sort of “type-checking” for geometric reasg. For example, if you derive
a formula that includes a term v, that is, a “point dot vector,” then there may be a bug
in your reasoning. In this way, CFG is analogous to type-cimgcia compilers. Although
you could do all programming in assembly language — whichsduo® do type-checking
and will happily led you add, say, a oating point value to aétion pointer — most people
would prefer to use a compiler which performs type-checlking can thus nd many bugs.

In order toimplemengeometric algorithms we need to use coordinates. Thesdioabes are part
of the representation of geometry — they are not fundamémt&lasoning about geometry itself.

Example:

CFG says that we cannot add two points; there is no meaningstopleration. Bu
what happens if we try to do so anyway, using coordinates?

Suppose we have two pointsg = (0;0) andp; = (1; 1), and we add them together
coordinate-wise:p, = po+ pr = (1;1). This is not a valid CFG operation, Qut
we have done it anyway just to tempt fate and see what happiassee that th
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resulting point is the same as one of the original poipis: p;.

Now, on the other hand, suppose the two points were repessena different coor-
dinate framerp = (1;1) andg = (2; 2). The pointsp andg, are thesamepoints a
Po andp;, with the same vector between them, but we have just repesémem i

a different coordinate frame, i.e., with a different origikdding together the points
we getx = v+ ¢p = (3; 3). This is adifferentpoint fromg, andg;, whereas befor
we got the same point.

The geometric relationship of the result of adding two poulepends on the coordi-
nate system. There is no clear geometric interpretatioadding two points.

Aside:
It is actually possible to de ne CFG with far fewer axioms ttitae ones listed above.
For example, the linear combination of vectors is simplyitoid and scaling of
vectors.

D
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5 3D Objects

5.1 Surface Representations

As with 2D objects, we can represent 3D objectparametric andimplicit forms. (There are
also explicit forms for 3D surfaces — sometimes called “heiglds” — but we will not cover
them here).

5.2 Planes

Implicit: (p  po) A =0, wherep is a point inR® on the plane, and is a normal vector
perpendicular to the plane.

A plane can be de ned uniquely by three non-colinear pomt$,, ps. Leta= p, p; and
D= ps p, Soaandbare vectors in the plane. Then= a B. Since the points are not
colinearknk 6 0.

Parametric: s(; )= po+ a+ Bfor; 2R.

Note:
This is similar to the parametric form of aling: )= po+ 4a.

A planar patch is a parallelogram de ned by bounds orand .

Example:
LetO 1 andO 1
/
_/
a/
/
/ |
L7777
Po b
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5.3 Surface Tangents and Normals

Thetangentto a curve ap is the instantaneous direction of the curvg.at

The tangent planeto a surface ap is analogous. It is de ned as the plane containing tangent
vectors to all curves on the surface that go thropgh

A surface normal at a pointp is a vector perpendicular to a tangent plane.

5.3.1 Curves on Surfaces

The parametric fornp(; ) of a surface de nes a mapping from 2D points to 3D points: gver
2D point(; ) in R? corresponds to a 3D poimtin R3. Moreover, consider a curdé ) =
( (); ())in2D —there is a corresponding curve in 3D contained withmgurface! ( ) =

p(I( ).

5.3.2 Parametric Form

Foracurves( )= (x( );y( );z( ))" in 3D, the tangent is
de( ) _  dx( ). dy( ). dz()

d d "d ' d (10)
For a surface poirg( ; ), two tangent vectors can be computed:
@ @
— and—: 11
@ @ (11)

Derivation:
Consider a poinft o; o) in 2D which corresponds to a 3D poist o; o). De ne
two straight lines in 2D:

di 1) = (1 o) (12)

o2 = (o 2 (13)
These lines correspond to curves in 3D:

d( 1) = s(d( 1)) (14)

e(2) = s(d 2) (15)
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Using the chain rule for vector functions, the tangents eséhcurves are:
@ = @@ + @@ = @ (16)
@ @@ @@ @
@ = @@ + @@ = @ (17)
@, @@ @@: @
Thenormalokat = o, = ,is
[ |
Moo = o ° (18)

The tangent plane is a plane containing the surfact af o) with normal vector equal to the
surface normal. The equation for the tangent plane is:

A( 0; o) (P S( 0; o) = O: (19)

What if we used different curves in 2D to de ne the tangent plaft can be shown that we get the
same tangent plane; in other words, tangent vectors of atilizes through a given surface point
are contained within a single tangent plane. (Try this askancese).

Note:

The normal vector is not unique. #is a normal vector, then any vecter is also
normal to the surface, for 2 R. What this means is that the normal can be scaled,
and the direction can be reversed.

5.3.3 Implicit Form

In the implicit form, a surface is de ned as the set of poiptthat satisfyf (p) = 0O for some
functionf . A normal is given by the gradient of,

Ap) = r ()i, (20)
_  @flp). @f(p). @f(p)
wherer f = =% =50 ~a7
Derivation:

Consider a 3D curve( ) that is contained within the 3D surface, and that passes
throughpg at o. In other wordsg( o) = po and

fe() =0 (21)
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for all . Differentiating both sides gives:

@f
Q@

Expanding the left-hand side, we see:

ef _ efe, efe, , efe.

=0 (22)

@ @@ @e @@ (23)
. d
= 11, 5 =0 (24)

This last line states that the gradient is perpendiculahéocurve tangent, which |is
the de nition of the normal vector.

Example:
The implicit form of a sphere ist (p) = kp ck?> R?=0. The normal at a point
pisir f =2(p 0©).

Exercise: show that the normal computed for a plane is theesaegardless of whether it is
computed using the parametric or implicit forms. (This waselin class). Try it for another
surface.

5.4 Parametric Surfaces
5.4.1 Bilinear Patch

A bilinear patch is de ned by four points, no three of which are colinear.

pOL I_l(a) P
Xb

fro @),

Givenpoo, Po1, P10, P11, de ne

o

—~

~
1

(1 )Poo +  Pio;
(1 )P+ Pr1:

=

—

~
1
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Then connecly( ) andly( ) with a line:
p(; )=@  lo( )+ h();
for O 1andO 1.

Question: when is a bilinear patch not equivalent to a plaasch? Hint: a planar patch is de ned
by 3 points, but a bilinear patch is de ned by 4.

5.4.2 Cylinder

A cylinder is constructed by moving a point on a lih@long a planar curvpg( ) such that the
direction of the line is held constant.

If the direction of the lind is @, the cylinder is de ned as
p(; )= po( )+ @
A right cylinder hasd perpendicular to the plane containipg( ).

A circular cylinder is a cylinder whergy( ) is a circle.

Example:
A right circular cylinder can be de ned bgo( ) = (r cos( );r sin( );0), for 0
< 2 ,andd=(0;0;1).

Sope(; )=(rcos();rsin( ); ), for0 1

To nd the normal at a point on this cylinder, we can use the lioipform
f(x;y;2)=x>+y? r?=0to ndr f =2(x;y;0).

Using the parametric form directly to nd the normal, we have

@ _ o v e @
@ - r( sin( );cos( );0); and@ (0;0;1); so

@ @ _ : - O)-
@ @ = (rcos( )rsin( );0):

Note:
The cross product of two vectoss= (a;; ay; az) andb= ( by; bp; bs) can
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be found by taking the determinant of the matrix,
2 . 3
i ]k
4 a a az?o:

b b by

5.4.3 Surface of Revolution

To form asurface of revolution, we revolve a curve in thg-z plane,c( ) = (x( );0;z( )),
about thez-axis.

Hence, each point ontraces out a circle parallel to they plane with radiugx( )j. Circles then
have the form(r cos( );r sin( )), where is the parameter of revolution. So the rotated surface
has the parametric form

s(; ) =(x( )cos( );x( )sin( );z( )):

Example:
If ¢( ) is aline perpendicular to the-axis, we have a right circular cylinder.

A torus is a surface of revolution:

c( )=(d+rcos();0;rsin( )):

5.4.4 Quadric

A quadric is a generalization of a conic section to 3D. The implicitnfioof a quadric in the
standard position is

ax’+ by + cZ+ d=0;
ax’+ by’ + ez=0;

fora;b;c;d; e R. There are six basic types of quadric surfaces, which depeitlde signs of the

parameters.

They are the ellipsoid, hyperboloid of one sheet, hypeidadd two sheets, elliptic cone, elliptic
paraboloid, and hyperbolic paraboloid (saddle). All bug thyperbolic paraboloid may be ex-
pressed as a surface of revolution.
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Example:
An ellipsoid has the implicit form

X2 y2 22
—+ —+ — 1=0:
a P 0

In parametric form, this is

s(; )=(asin( )cos( );bsin( )sin( );ccos());

for 2[0; Jand 2 ( ; 1]

5.4.5 Polygonal Mesh

A polygonal meshis a collection of polygons (vertices, edges, and faces)p@dggons may be
used to approximate curves, a polygonal mesh may be usegtoxamate a surface.

edge

face

3
>

vertex

A polyhedronis a closed, connected polygonal mesh. Each edge must keddhatwo faces.
A facerefers to a planar polygonal patch within a mesh.
A mesh issimple when its topology is equivalent to that of a sphere. That isas no holes.

Given a parametric surfacs(,; ), we can sample values ofand to generate a polygonal mesh
approximatings.

5.5 3D Af ne Transformations

Three dimensional transformations are used for many eéifitgourposes, such as coordinate trans-
forms, shape modeling, animation, and camera modeling.
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An af ne transform in 3D looks the same as in 2B(p) = Ap+ tforA 2 R® 3, p;t2 R3 A
homogeneous af ne transformation is

F(p) = Mp; wherep = Fl)

Translation'A = |, t= (tx;ty;t;).
Scaling:A = diag(sys;sy;s;), t= 0.
Rotation:A = R,t= 0, anddet(R) = 1.

3D rotations are much more complex than 2D rotations, so wWecansider only elementary
rotations about thg, y, andz axes.

For a rotation about the-axis, thez coordinate remains unchanged, and the rotation occurgin th
x-y plane. So ifg= Rp, theng, = p,. That s,

& _ cos() sin() P
q  sin() cos() Py

Including thez coordinate, this becomes

cos() sin() O 3
R,()=4 sin() cos() 03:
0 0 1

Similarly, rotation about th&-axis is

2 3
1 0 0
Ry()=4%40 cos() sin() o:
0 sin() cos()
For rotation about thg-axis,

cos() O sin() 3
R()=4 0 1 0 9
sin() 0 cos()
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5.6 Spherical Coordinates

Any three dimensional vectosn = ((uy;Uy;Uu,) may be represented ispherical coordinates
By computing a polar angle counterclockwise about theaxis from thez-axis and an azimuthal
angle counterclockwise about tteeaxis from thex-axis, we can de ne a vector in the appropriate
direction. Then it is only a matter of scaling this vectortie torrect lengtiiuZ + uZ + u?) *=to
match.

AZ

<y

\/ N
q
X -

Given angles and , we can nd a unit vector asi = (cos( )sin( );sin( )sin( );coq )).

Uy

Given a vectory, its azimuthal angle is given by = arctan and its polar angle is =

arctan . This formula does not require thate a unit vector.

2 2y1=2
(ug+uy)
Uz

5.6.1 Rotation of a Point About a Line

Spherical coordinates are useful in nding the rotation gb@nt about an arbitrary line. Let
[( ) = + with ktk = 1, andd having azimuthal angle and polar angle. We may compose
elementary rotations to get the effect of rotating a ppiaboutl( ) by a counterclockwise angle

1. Align ¢ with thez-axis.

Rotate by  about thez-axis sot goes to thexz-plane.
Rotate up to the-axis by rotating by  about they-axis.

Henceq= Ry( )R.( )p

2. Apply a rotation by about thez-axis: R,( ).
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3. Invert the rst step to move the-axis back tod: R,( )Ry( ) =(Ry( )R,( )) -
Finally, our formulaisg= Ru( )p= Rz( )Ry( )Rz( )Ry( )R( )p.

5.7 Nonlinear Transformations

Af ne transformations are a rst-order model of shape d@f@tion. With af ne transformations,
scaling and shear are the simplest nonrigid deformationanr@n higher-order deformations
include tapering, twisting, and bending.

Example:
To create a nonlinear taper, instead of constantly scatimgaindy for all z, as in
2 3
a 0o
q=40 b 05p;
0 01

let a andbbe functions ofz, so

2 3
ap;) 0 O
qg=4 0 bp,) 0°p:

0 0 1

A linear taper looks like(z) = o+ 1z
A quadratic taper would ba(z) = o+ 1z+ ,7°

y y

(c) Linear taper (d) Nonlinear taper

5.8 Representing Triangle Meshes

A triangle mesh is often represented with a list of verticesd a list of triangle faces. Each vertex
consists of three oating point values for thxe y, andz positions, and a face consists of three
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indices of vertices in the vertex list. Representing a meshwhy reduces memory use, since each
vertex needs to be stored once, rather than once for everytiaon; and this gives us connectivity
information, since it is possible to determine which fadesre a common vertex. This can easily
be extended to represent polygons with an arbitrary numbeertices, but any polygon can be
decomposed into triangles. A tetrahedron can be repreasbeiitie the following lists:

Vertex index| x |y | z Face index Vertices
0 0/0(|0 0 0,1,2
1 1/0/0 1 0,31
2 0/1|0 2 1,3,2
3 0/0|1 3 2,3,0

Notice that vertices are speci ed in a counter-clockwisdeny so that the front of the face and
back can be distinguished. This is the default behavior foerL, although it can also be set
to take face vertices in clockwise order. Lists of normald &xture coordinates can also be
speci ed, with each face then associated with a list of wediand corresponding normals and
texture coordinates.

5.9 Generating Triangle Meshes

As stated earlier, a parametric surface can be sampled &yafera polygonal mesh. Consider the
surface of revolution
S(; )=[x( )cos;x ( )sin;z ()

withthe prole C( )=[x( );0;z( )]" and 2 [0;2 ].
To take a uniform sampling, we can use

1
= % and =
m

wherem is the number of patches to take along #haxis, andh is the number of patches to take
around thez-axis.

2.
n’

Each patch would consist of four vertices as follows:
o .. 1 0 1
ST Sij
5 =B S+ i ) E_BSay £ g i20m 1
! S((i+1) ;(+1) ) Sit1ja N j2[0n 1]
s @G+ ) Sij +1
To render this as a triangle mesh, we miestselatethe sampled quads into triangles. This is
accomplished by de ning triangldé®; andQj; givenS; as follows:

Pj =(Sij:Siv15:Sisag+1); andQy = (Sij; Sisayjea; Sij +1)
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6 Camera Models

Goal: To model basic geometry of projection of 3D points, curvesl surfaces onto a 2D surface,
theview planeorimage plane

6.1 Thin Lens Model

Most modern cameras use a lens to focus light onto the viemefdiee., the sensory surface). This
is done so that one can capture enough light in a suf cierittyrsperiod of time that the objects do
not move appreciably, and the image is bright enough to shgnv sant detail over a wide range
of intensities and contrasts.

Aside:
In a conventional camera, the view plane contains eithetgobactive chemicals;
in a digital camera, the view plane contains a charge-cougéice (CCD) array.
(Some cameras use a CMOS-based sensor instead of a CCD). Imihe bye, the
view plane is a curved surface called tletina, and and contains a dense array of
cells with photoreactive molecules.

Lens models can be quite complex, especially for compoumslflaund in most cameras. Here we
consider perhaps the simplist case, known widely as theléhism model. In the thin lens model,
rays of light emitted from a point travel along paths throtigé lens, convering at a point behind
the lens. The key quantity governing this behaviour is dattes focal lengthof the lens. The
focal length,jf j, can be de ned as distance behind the lens to which rays from aitely distant
source converge in focus.

surface poin

view plane

W optical axis

0 1

More generally, for the thin lens model,zf is the distance from the center of the lens (i.e., the
nodal point) to a surface point on an object, then for a foeadthjf j, the rays from that surface
point will be in focus at a distancg behind the lens center, whezg andz, satisfy the thin lens
equation:
1 1 1
— = —+ — 25
ifj 20 zn (29)
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6.2 Pinhole Camera Model

A pinhole camera is an idealization of the thin lens as aperture shtmkero.

view plane
\*%
infinitesimal
pinhole

Light from a point travels along a single straight path tlyloa pinhole onto the view plane. The
object is imaged upside-down on the image plane.

Note:

We use a right-handed coordinate system for the camerathéth-axis as the hor
izontal direction and thg-axis as the vertical direction. This means that the optical
axis (gaze direction) is the negatizeaxis.

y

Here is another way of thinking about the pinhole model. $8pp/ou view a scene with one eye
looking through a square window, and draw a picture of whatgee through the window:

(Engraving by Albrecht Drer, 1525).
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The image you'd get corresponds to drawing a ray from the @gitipn and intersecting it with
the window. This is equivalent to the pinhole camera modedept that the view plane is in front
of the eye instead of behind it, and the image appears rag¥sgp, rather than upside down. (The
eye point here replaces the pinhole). To see this, cons@eng rays from scene points through a
view plane behind the eye point and one in front of it:

1

For the remainder of these notes, we will consider this camsydel, as it is somewhat easier to
think about, and also consistent with the model used by OpenG

Aside:

The earliest cameras were room-sized pinhole camerasgcalinera obscura You
would walk in the room and see an upside-down projection efaitside world on
the far wall. The wordcamerais Latin for “room;” camera obscuraneans “dark
room.”

18th-century camera obscuras. The camera on the right us@saa in the roof tg
project images of the world onto the table, and viewers méatedhe mirror.

6.3 Camera Projections

Consider a poinp in 3D space oriented with the camera at the origin, which wetwa project
onto the view plane. To proje, to y, we can use similar triangles to get= ;—Zpy: This is
perspective projection

Note thatf < 0, and the focal length ig j.

In perspective projection, distant objects appear sméilbar near objects:
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Y

z ] \f

pinhole  image

Figure 1: *

Perspective projection

The man without the hat appears to be two different sizes\ thaigh the two images of him have
identical sizes when measured in pixels. In 3D, the man withioe hat on the left is about 18
feet behind the man with the hat. This shows how much you nmegpect size to change due to
perspective projection.

6.4 Orthographic Projection

For objects suf ciently far away, rays are nearly paraléeid variation inp, is insigni cant.
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Here, the baseball players appear to be about the same Ieigixels, even though the batter
is about 60 feet away from the pitcher. Although this is amepie of perspective projection, the
camera is so far from the players (relative to the camerd fength) that they appear to be roughly
the same size.

In the limit,y = p , for some real scalar. This isorthographic projection:

y
T: .
Z #
< ®
image

6.5 Camera Position and Orientation

Assume camera coordinates have their origin at the “ey@h@le) of the camera.

y \Y

\ ﬂ u
9

N

Y

Figure 2:

Let g be the gaze direction, so a vector perpendicular to the viewep(parallel to the camera
z-axis) is

W= (26)

AP
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We need two more orthogonal vectarsandv to specify a camera coordinate frame, wiland

v parallel to the view plane. It may be unclear how to choosentdeectly. However, we can
instead specify an “up” direction. Of course this up directwill not be perpendicular to the gaze
direction.

Lett be the “up” direction (e.qg., toward the sky s& (0; 1;0)). Then we wantr to be the closest
vector in the viewplane to. This is really just the projection dfonto the view plane. And of
course must be perpendicular toandw. In fact, with these de nitions it is easy to show that
must also be perpendiculartpso one way to computeandv fromtandgis as follows:

r w
H=
Kkt wk

¥Y=w H (27)

Of course, we could have use many different “up” directi@mslongas w6 0.

Using these three basis vectors, we can de namera coordinate systemin which 3D points are
represented with respect to the camera's position andtatien. The camera coordinate system
has its origin at the eye poietand has basis vectots ¥, andw, corresponding to the, y, andz
axes in the camera’s local coordinate system. This explainswe chosew to point away from
the image plane: the right-handed coordinate system regjtivatz (and, hencew) point away
from the image plane.

Now that we know how to represent the camera coordinate fraitien the world coordinate
frame we need to explicitly formulate the rigid transforroatfrom world to camera coordinates.
With this transformation and its inverse we can easily exppoints either in world coordinates or
camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might dpfbkto remember the mapping from
points in camera coordinates to points in world coordinakes example, we have the following
correspondences between world coordinates and camediates: Using such correspondences

Camera coordinatdc; Yc; z.) | World coordinategx;y; z)
(0;0;0) e
(0;0;1) e+ fw
(0;1;0) e+ v
(0;1;1) e+ v+ fw

it is not hard to show that for a general point expressed inecaroordinates g% = ( X¢; Ye; Zc),
the corresponding point in world coordinates is given by

pY = e+ XcH+ YoV+ Zcw (28)
= d v wp+te (29)
= Mpt+ €e: (30)
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where 2 3
up vi w

MCW: H vV W :4U2 \/) W25 (31)
Us V3 Wj

Note: We can de ne the same transformation for points in hgemeous coordinates:

M e
Mew= g o

Now, we also need to nd the inverse transformation, i.eonfrworld to camera coordinates.
Toward this end, note that the matiM,, is orthonormal. To see this, note that vectersy
and,w are all of unit length, and they are perpendicular to onelarotYou can also verify this

by computingvi CTWMCW. BecauséM, is orthonormal, we can express the inverse transformation
(from camera coordinates to world coordinates) as

PP = MLE" e
= Mycp" d;
2 .3
whereM,. = MJ =4 &7 5:(why?), andd= M] e.
WT

In homogeneous coordinatgs,= M,.p", where

M Myce
M , = G_\Ii_vc 1wc
Myc © I e

o0 1 9 1

This transformation takes a point from world to camera-essd coordinates.

6.6 Perspective Projection

Above we found the form of the perspective projection ushmitiea of similar triangles. Here we
consider a complementary algebraic formulation. To begeare given

a pointp® in camera coordinatesiyw space),
center of projection (eye or pinhole) at the origin in cam=yardinates,

image plane perpendicular to theaxis, through the poin; 0; f ), withf < 0, and
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line of sight is in the direction of the negatizeaxis (in camera coordinates),
we can nd the intersection of the ray from the pinholegfowith the view plane.
The ray from the pinhole tp®isr( )= (p¢ 0).

The image plane has norm@; 0; 1) = A and contains the poir{0; 0;f ) = f. So a poini® is on
the plane wheix® f) #=0.If x® = (x5 y¢ 2%, thenthe plane satises f =0.

To ndthe intersection of the plarne® = f and rayr( ) = p°, substituterinto the plane equation.
With p® = (pg; pj; p5), we havep 7 = f,so = f=p7, and the intersection is

C C C C

foy= 2B op PGB (32)
A Pz Pz

The rst two coordinates of this intersection determine the image coordinates.

2D points in the image plane can therefore be written as
x _f p _ 100 Ff .
y TR 010

The mapping fronp® to (x ;y ;1) is calledperspective projection

Note:

Two important properties of perspective projection are:
Perspective projection preserves linearity. In other wpthe projection of
3D line is a line in 2D. This means that we can render a 3D lirggnant by
projecting the endpoints to 2D, and then draw a line betwhegse points in
2D.

Perspective projection does not preserve parallelism:parallel lines in 30
do not necessarily project to parallel lines in 2D. When tleggmted lines inter
sect, the intersection is calledranishing point, since it corresponds to a point
in nitely far away. Exercise: when do parallel lines projéc parallel lines an
when do they not?

)

|5

Aside:
The discovery of linear perspective, including vanishimmngs, formed a cornef
stone of Western painting beginning at the Renaissance. ©aotlier hand, defyin
realistic perspective was a key feature of Modernist pagnti

«Q

To see that linearity is preserved, consider that rays fromtp on a line in 3D through a pinhole
all lie on a plane, and the intersection of a plane and the enpdane is a line. That means to draw
polygons, we need only to project the vertices to the imageghnd draw lines between them.
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6.7 Homogeneous Perspective

The mapping op® = (pg;py;p;) tox = —(px, p; pS) is just a form of scaling transformation.
However, the magnitude of the scaling depends on the g€ptho it's not linear.

Fortunately, the transformation can be expressed linéerlgs a matrix) in homogeneous coordi-
nates. To see this, remember tBat (p;1) = (p;1) in homogeneous coordinates. Using this
property of homogeneous coordinates we can witas

R = plp pi,%

As usual with homogeneous coordinates, when you scale tmed@neous vector by the inverse
of the last element, when you get in the rst three elemenfseésisely the perspective projection.
Accordingly, we can express as a linear transformation @f:

2 3
10 0 0

_01002(: c.

*‘50010'0 Mop”
00 =f 0

Try multiplying this out to convince yourself that this albvks.
Finally, l\?]p is called the homogeneous perspective matrix, and gihee M,.p¥, we havet =

MM cp?.

6.8 Pseudodepth

After dividing by its last elemen® has its rst two elements as image plane coordinates, and its
third element id . We would like to be able to alter the homogeneous perspmmmftrlxl\ﬁ SO
that the third element o?k encodes depth while keeping the transformation linear.

2 3
10 0 O
_ _fo1 o0 oéc _
Idea: Let R —go 0 a b p°, soz = —(ap§+ b).
0 0 = O

What shoulda andbbe? We would like to have the following two constraints:

1 whenpS = f
1 whenpf =

wheref gives us the position of theear plane, andF gives us the coordinate of théar plane.
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So 1=af +bandl=af +bl. Then2=b- b=Db L 1,andwecan nd

2F
b= ——:
f F
Substituting this value fdoback in, we get 1 = af + % and we can solve fa:
1 2F
= — +1
2 f f F
1 2F f F
= = +
f f F f F
1 f+F
- f f F

These values o& andb give us a functiorz (p$) that increases monotonically @$ decreases
(sinceps is negative for objects in front of the camera). Herncecan be used to sort points by
depth.

Why did we choose these values foandb? Mathematically, the speci ¢ choices do not matter,
but they are convenient for implementation. These are alsedlues that OpenGL uses.

What is the meaning of the near and far planes? Again, for coemee of implementation, we will
say that only objects between the near and far planes abdevi€dbjects in front of the near plane
are behind the camera, and objects behind the far plane@fartaway to be visible. Of course,
this is only a loose approximation to the real geometry ofwvloeld, but it is very convenient
for implementation. The range of values between the neafamplane has a number of subtle
implications for rendering in practice. For example, if ys®t the near and far plane to be very far
apart in OpenGL, then Z-buffering (discussed later in therse) will be very inaccurate due to
numerical precision problems. On the other hand, movingttu® close will make distant objects
disappear. However, these issues will generally not aftetdering simple scenes. (For homework
assignments, we will usually provide some code that avtiese problems).

6.9 Projecting a Triangle

Let's review the steps necessary to project a triangle frbjaat space to the image plane.

1. Atriangle is given as three vertices in an object-baseddinate framep?, p3, ps.
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\o x

Ps ¥ Py
z
A triangle in object coordinates.

2. Transform to world coordinates based on the object'sstmmation: f, Py, p%, where

P = I\ﬂowp?-

aw
G P2
y
A AW
1
P3’
X
Z

The triangle projected to world coordinates, with a caméra a

3. Transform from world to camera coordinat@s= M,,.p".
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Y4
The triangle projected from world to camera coordinates.

4. Homogeneous perspective transformatiyn= I\'/]ppic,where

2 3 2 . 3
10 0 O Px
801 o0 OZ' g of Z
I\,’]p‘goo a b5 N dag+p
0 0 = O 2

5. Divide by the last component:
2 3 2 ps 3
X pg
4y 5:f9 E—i g
z ap;+b
pg
1,1, 1
A %
D,
A %
Py

A %
Ps

(-1, -1, -1)

The triangle in normalized device coordinates after perspedivision.
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Now (x ;y ) is an image plane coordinate, andis pseudodepth for each vertex of the
triangle.

6.10 Camera Projections in OpenGL

OpenGL's modelview matrix is used to transform a point froljeat or world space to camera
space. In addition to this,@ojection matrixis provided to perform the homogeneous perspective
transformation from camera coordinatesctip coordinatesbefore performing perspective divi-
sion. After selecting the projection matrix, tg#rustum function is used to specify a viewing
volume, assuming the camera is at the origin:

glMatrixMode(GL_PROJECTION);

glLoadldentity();

glFrustum(left, right, bottom, top, near, far);

For orthographic projectioglOrtho can be used instead:

glOrtho(left, right, bottom, top, near, far);

The GLU library provides a function to simplify specifyingparspective projection viewing frus-
tum:

gluPerspective(fieldOfView, aspectRatio, near, far);

The eld of view is speci ed in degrees about tleaxis, so it gives the vertical visible angle. The
aspect ratio should usually be the viewport width over itglig to determine the horizontal eld
of view.
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7 Visibility
We have seen so far how to determine how 3D points projectedadimera’s image plane. Ad-
ditionally, we can render a triangle by projecting eacheasetb 2D, and then Iling in the pixels
of the 2D triangle. However, what happens if two trianglesjget to the same pixels, or, more
generally, if they overlap? Determining which polygon tader at each pixel isisibility. An
object is visible if there exists a direct line-of-sight twat point, unobstructed by any other ob-
jects. Moreover, some objects may be invisible becausedtesipehind the camera, outside of the
eld-of-view, or too far away.

7.1 The View Volume and Clipping

Theview volumeis made up of the space between the near plarend far planek-. Itis bounded
byB, T, L, andR on the bottom, top, left, and right, respectively.

The angular eld of view is determined Hy, B, T, L, andR:

T

From this gure, we can nd thatan( ) = 37>

Clipping is the process of removing points and parts of objects tleadaiside the view volume.

We would like to modify our homogeneous perspective tramsédion matrix to simplify clipping.

We have 2 3
10 0 0

01 0 0
MZE f+F z:
Hoo ;e

00 1=f 0

Since this is a homogeneous transformation, it may be ntieldiipy a constant without changing
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its effect. MultiplyingM, by f gives us

2 3
f 0 0
§Of 0 oz
00 PEZ
00 1 0

Rt 0 gL O
2f +
R = g 0 T B $ S 0 pc,
- f+F 2fF 1
0 0 rF fF
0 0 1 0

then, after projection, the view volume becomes a cube wvididsssat 1 and+1. Thisis called
the canonical view volumeand has the advantage of being easy to clip against.

Note:
The OpenGL command glFrustum(l, r, b, t, n, f) takes the distao the near and
far planes rather than the position on ttraxis of the planes. Hence, the n used by
glFrustum is our f and the f used by glFrustum isF. Substituting these values
into our matrix gives exactly the perspective transfororatnatrix used by OpenGL.

7.2 Backface Removal

Consider a closed polyhedral object. Because it is closedidarof the object will always be invis-
ible, blocked by the near side. This observation can be usaddelerate rendering, by removing
back-faces.

Example:
For this simple view of a cube, we have three backfacing pmigg the left side,
back, and bottom:

Only the near faces are visible.

We can determine if a face is back-facing as follows. Suppaseompute a normais for a mesh
face, with the normal chosen so that it points outside theatlifor a surface poimt on a planar
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patch and eye poirg, if (p €) A > 0, then the angle between the view direction and normal
is less thar®0 , so the surface normal points away fr@nThe result will be the same no matter
which face poinp we use.

Hence, if(p €) +n > 0, the patch is backfacing and should be removed. Otherwisgghtbe
visible. This should be calculated in world coordinatests® patch can be removed as early as
possible.

Note:
To computen, we need three vertices on the patch, in counterclockwiderpas
seen from the outside of the objept, p;, andps. Then the unit normal is

(P2 p1) (p3 p2) .
k(P2 p1)  (ps pok

Backface removal is a “quick reject” used to accelerate renge It must still be used together
with another visibility method. The other methods are motgeasive, and removing backfaces
just reduces the number of faces that must be considered loyeaaexpensive method.

7.3 The Depth Buffer

Normally when rendering, we compute an image buifig that stores the color of the object
that projects to pixe{i;j ). The depthd of a pixel is the distance from the eye point to the object.
The depth buffer is an arrayzbuf(i, j) which stores, for each pixé€l;j ), the depth of the
nearest point drawn so far. It is initialized by setting atipth buffer values to in nite depth:
zbuf(i,)) =1.

To draw colorc at pixel(i;j ) with depthd:
if d < zbuf(i, j) then

putpixel(i, j, c)
zbuf(i, j) = d
end

When drawing a pixel, if the new pixel's depth is greater tHamc¢urrent value of the depth buffer
at that pixel, then there must be some object blocking thepirgl, and it is not drawn.

Advantages
Simple and accurate

Independent of order of polygons drawn
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Disadvantages
Memory required for depth buffer

Wasted computation on drawing distant points that are drawem with closer points that
occupy the same pixel

To represent the depth at each pixel, we can use pseudoddpth is available after the homo-
geneous perspective transformatiohen the depth buffer should be initialized to 1, since the
pseudodepth values are betweehand 1. Pseudodepth gives a number of numerical advantages
over true depth.

To scan convert a triangular polygon with verticgs x,, andxs, pseudodepth values, d,, and

ds, and Il color c, we calculate th& values and pseudodepths for each edge at each scanline. Then
for each scanline, interpolate pseudodepth between eagesompare the value at each pixel to
the value stored in the depth buffer.

7.4 Painter's Algorithm

The painter's algorithm is an alternative to depth buffering to attempt to ensuré tthe closest
points to a viewer occlude points behind them. The idea igaodhe most distant patches of a
surface rst, allowing nearer surfaces to be drawn over them

In the heedless painter's algorithm, we rst sort faces adicw to depth of the vertex furthest from
the viewer. Then faces are rendered from furthest to nearest

There are problems with this approach, however. In somescagace that occludes part of another
face can still have its furthest vertex further from the \éewhan any vertex of the face it occludes.
In this situation, the faces will be rendered out of orderslpolygons cannot intersect at all as
they can when depth buffering is used instead. One solusida split triangles, but doing this
correctly is very complex and slow. Painter's algorithmasaly used directly in practice; however,
a data-structure called BSP trees can be used to make psiggotithm much more appealing.

7.5 BSP Trees

The idea ofbinary space partitioning trees (BSP trees) is to extend the painter's algorithm to
make back-to-front ordering of polygons fast for any eyetan and to divide polygons to avoid
overlaps.

Imagine two patcheq;; andT,, with outward-facing normals; and.

1The OpenGL documentation is confusing in a few places — ‘ileigtused to mean pseudodepth, in commands
like glReadPixels  andgluUnProject

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 48



CSC418/CSCD18/CSC2504 Visibility

T

/ﬁ Tl /< 2
n
2
\Qg M T,
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If the eye pointe, andT, are on the same side @f, then we drawl; beforeT,. Otherwise,T,
should be drawn befor§;.

We know if two points are on the same side of a plane contaifijrigy using the implicit equation
for Ty,

fa(x) = (x p) # (33)

If x is on the planefi(x) = 0. Otherwise, iff ;(x) > 0, x is on the “outside” ofT;, and if
f1(x) < O, x is “inside.”

Before any rendering can occur, the scene geometry must loegsed to build a BSP tree to

represent the relative positions of all the facets with eesfo their inside/outside half-planes. The
same BSP tree can be used for any eye position, so the tree asliptbe constructed once if

everything other than the eye is static. For a single scéeee tare many different BSP trees that
can be used to represent it — it's best to try to constructriuad trees.

The tree traversal algorithm to draw a tree with rBois as follows:

if eye is in the outside half-space of F
draw faces on the inside subtree of F
draw F
draw faces on the outside subtree of F

else
draw faces on the outside subtree of F
draw F (if backfaces are drawn)
draw faces on the inside subtree of F

end

7.6 Visibility in OpenGL

OpenGL directly supports depth buffering, but it is ofteedisn addition to other visibility tech-
niques in interactive applications. For example, many gause a BSP tree to prune the amount
of static map geometry that is processed that would othernas be visible anyway. Also, when
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dealing with blended, translucent materials, these abjeftén must be drawn from back to front
without writing to the depth buffer to get the correct appeae. For simple scenes, however, the
depth buffer alone is suf cient.

To use depth buffering in OpenGL with GLUT, the OpenGL cohtaxst be initialized with mem-
ory allocated for a depth buffer, with a command such as

glutinitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH );
Next, depth writing and testing must be enabled in OpenGL:
glEnable(GL_DEPTH_TEST);

OpenGL will automatically write pseudodepth values to teett buffer when a primitive is ren-
dered as long as the depth test is enabled.glibepthMask function can be used to disable depth
writes, so depth testing will occur without writing to thepdle buffer when rendering a primitive.

When clearing the display to render a new frame, the deptlebsiffould also be cleared:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
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8 Basic Lighting and Re ection

Up to this point, we have considered only the geometry of hbjeais are transformed and pro-
jected to images. We now discuss #tedingof objects: how the appearance of objects depends,
among other things, on the lighting that illuminates thengg@nd on the interaction of light with
the objects in the scene. Some of the basic qualitative piiepef lighting and object re ectance
that we need to be able to model include:

Light source - There are different types of sources of light, such as psotces (e.g., a small
light at a distance), extended sources (e.g., the sky onualglday), and secondary re ections
(e.g., light that bounces from one surface to another).

Re ectance - Different objects re ect light in different ways. For exate, diffuse surfaces ap-
pear the same when viewed from different directions, wheegemirror looks very different from
different points of view.

In this chapter, we will develop simpli ed model of lightinipat is easy to implement and fast to
compute, and used in many real-time systems such as Oper&_mbdel will be an approxima-
tion and does not fully capture all of the effects we obsemdae real world. In later chapters, we
will discuss more sophisticated and realistic models.

8.1 Simple Re ection Models
8.1.1 Diffuse Re ection

We begin with the diffuse re ectance model. A diffuse sugas one that appears similarly bright
from all viewing directions. That is, the emitted light appgindependent of the viewing location.
Let p be a point on a diffuse surface with normmllight by a point light source in directiogafrom
the surface. The re ected intensity of light is given by:

Lg(p) = rgql max(0;s n) (34)

wherel is the intensity of the light sourcey is the diffuse re ectance (or albedo) of the surface,
andsis the direction of the light source. This equation requitesvectors to be normalized, i.e.,

i =1,jir=1j.

Thes nterm is called thdoreshortening termWhen a light source projects light obliquely at
a surface, that light is spread over a large area, and leggedight hits any speci ¢ point. For
example, imagine pointing a ashlight directly at a wall sas in a direction nearly parallel: in the

latter case, the light from the ashlight will spread overragter area, and individual points on the
wall will not be as bright.
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For color rendering, we would specify the re ectance in eql@s(rqr;rq.c;rqas)), and specify
the light source in color as well r; I g;1g). The re ected color of the surface is then:

Lar(P) = rgrlr max(0;s m) (35)
Lac(p) = rgclec max(0;s T) (36)
Lag(p) = rgsls max(0;s m) (37)

8.1.2 Perfect Specular Re ection

For pure specular (mirror) surfaces, the incident lightrfreach incident directiof; is re ected
toward a unique emittant directidl. The emittant direction lies in the same plane as the intiden
directiond; and the surface normal and the angle betweamandd; is equal to that betweemand

di. One can show that the emittant direction is giverdby 2(x1 &)f ;. (The derivation was

n

di de

covered in class). In perfect specular re ection, the lightitted in directiord, can be computed
by re ecting d. across the normal (&a d.)A 0.), and determining the incoming light in this
direction. (Again, all vectors are required to be normalizethese equations).

8.1.3 General Specular Re ection

Many materials exhibit a signi cant specular componenthait re ectance. But few are perfect
mirrors. First, most specular surfaces do not re ect alhtigand that is easily handled by intro-
ducing a scalar constant to attenuate intensity. Seconst, specular surfaces exhibit some form
of off-axis specular re ectionThat is, many polished and shiny surfaces (like plastickraatals)
emit light in the perfect mirror direction and in some neadiections as well. These off-axis
specularities look a little blurred. Good exampleskghlightson plastics and metals.

More precisely, the light from a distant point source in tivection ofsis re ected into a range
of directions about the perfect mirror directiors= 2(11 9A s One common model for this is
the following:

Ls(0e) = rsl max(0; m dg) ; (38)

wherer is called the specular re ection coef cieitis the incident power from the point source,
and 0 is a constant that determines the width of the specular igigis. As increases, the
effective width of the specular re ection decreases. Inlihet as increases, this becomes a
mirror.
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Specularity as a function ofa and f
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Figure 3: Plot of specular intensity as a function of viewargyle .

The intensity of the specular region is proportionaitax(0; cos ) , where is the angle between

mandd.. One way to understand the nature of specular re ectionpgdbthis function, see Figure
3.

8.1.4 Ambient lllumination

The diffuse and specular shading models are easy to computie@ften appear arti cial. The
biggest issue is the point light source assumption, the wimsbus consequence of which is that
any surface normal pointing away from the light source ,(f@: whichs # < 0) will have a
radiance of zero. A better approximation to the light sous@uniformambientterm plus a point
light source. This is a still a remarkably crude model, Bstrituch better than the point source by
itself. Ambient illumintation is modeled simply by:

La(p) = rala (39)

wherer 4 is often called the ambient re ection coef cient, ahgdenotes the integral of the uniform
illuminant.

8.1.5 Phong Re ectance Model

The Phong re ectance modelis perhaps the simplest widely used shading model in compute
graphics. It comprises a diffuse term (Eqn (81)), an ambemh (Eqn (82)), and a specular term
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(Egn (85)):
L(p;d.) = rqlg max(0;s A) + raly + rglsmax(0; m ) ; (40)
where

la, 14, @andl, are parameters that correspond to the power of the lightestor the ambient,
diffuse, and specular terms;

ra, rq andrg are scalar constants, called re ection coef cients, thatedmine the relative
magnitudes of the three re ection terms;

determines the spread of the specurlar highlights;
fis the surface normal at
3is the direction of the distant point source;
m is the perfect mirror direction, givepnand<s; and

andd; is the emittant direction of interest (usually the direotaf the camera).

In effect, this is a model in which the diffuse and speculanponents of re ection are due to

incident light from a point source. Extended light sourced ¢he bouncing of light from one

surface to another are not modeled except through the airieien. Also, arguably this model

has more parameters than the physics might suggest; forpdeathe model does not constrain
the parameters to conserve energy. Nevertheless it is snesetiseful to give computer graphics
practitioners more freedom in order to acheive the appeartiey're after.

8.2 Lighting in OpenGL

OpenGL provides a slightly modi ed version of Phong liglginLighting and any speci c lights
to use must be enabled to see its effects:

glEnable(GL_LIGHTING); // enable Phong lighting
glEnable(GL_LIGHTO); /I enable the first light source
glEnable(GL_LIGHT1); /I enable the second light source

Lights can be directional (in nitely far away) or positiohaPositional lights can be either point
lights or spotlights. Directional lights have tiecomponent set to 0, and positional lights have
set to 1. Light properties are speci ed with thieight ~ functions:
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GLfloat direction]] = {1.0f, 1.0f, 1.0f, 0.0f};
GLfloat position[] = {5.0f, 3.0f, 8.0f, 1.0f};
Glfloat spotDirection[] = {0.0f, 3.0f, 3.0f};
Glfloat diffuseRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};
Glfloat specularRGBA[] = {1.0f, 1.0f, 1.0f, 1.0f};

/I A directional light

glLightfv(GL_LIGHTO, GL_POSITION, direction);
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuseRGBA);
glLightfv(GL_LIGHTO, GL_SPECULAR, specularRGBA);

/I A spotlight

glLightfv(GL_LIGHT1, GL_POSITION, position);

glLightfv(GL_LIGHT1, GL_DIFFUSE, diffuseRGBA);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spotDirection );
glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0f);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 30.0f);

OpenGL requires you to specify both diffuse and specularpmmants for the light source. This
has no physical interpretation (real lights do not haveftidi¢” or “specular” properties), but may
be useful for some effects. TigMaterial ~ functions are used to specify material properties, for
example:

GLfloat diffuseRGBA = {1.0f, 0.0f, 0.0f, 1.0f};

GLfloat specularRGBA = {1.0f, 1.0f, 1.0f, 1.0f};
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseRGBA);
glMaterialfv(GL_FRONT, GL_SPECULAR, specularRGBA);
gIMaterialf(GL_FRONT, GL_SHININESS, 3.0f);

Note that both lights and materials have ambient terms. thafdilly, there is a global ambient
term:

glLightfv(GL_LIGHTO, GL_AMBIENT, ambientLight);
glMaterialfv(GL_FRONT, GL_AMBIENT, ambientMaterial);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientGlobal );

The material has an emission term as well, that is meant teehugjects that can give off their
own light. However, no light is actually cast on other obgactthe scene.

glMaterialfv(GL_FRONT, GL_EMISSION, em);

The global ambient term is multiplied by the current matesimbient value and added to the
material’'s emission value. The contribution from eachtigithen added to this value.

When rendering an object, normals should be provided for é&zah or for each vertex so that
lighting can be computed:
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gINormal3f(nx, ny, nz);
glVertex3f(x, vy, 2);
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9 Shading

Goal: To use the lighting and re ectance model to shade facets afygpnal mesh — that is, to
assign intensities to pixels to give the impression of opasjufaces rather than wireframes.

Assume we're given the following:
e - center of projection in world coordinates
[ - point light source location
| a; 14 - intensities of ambient and directional light sources
ra;rq;rs - coef cients for ambient, diffuse, and specular re ectson

- exponent to control width of highlights

9.1 Flat Shading

With at shading, each triangle of a mesh is lled with a single color.

For a triangle with counterclockwise vertices, p,, andps, as seen from the outside, let the

midpoint bep = }(py + P2 + Ps) with normaln = ((f2 LU {Es Pl Then we may nd the

intensity atp using the Phong model and Il the polygon with that:

E = Tara+ rgigmax(0;a 9+ rsigmax(0;+ € ; (42)

— IV p - e p —
wheres= ok B kew Iok,and1=— 5+ 2(s NN

Flat shading is a simple approach to lling polygons with@glbut can be inaccurate for smooth
surfaces, and shiny surfaces. For smooth surfaces—whecbfn tesselated and represented as
polyhedra, using at shading can lead to a very strong fagegiffect. In other words, the surface
looks very much like a polyhedron, rather than the smootfasarit's supposed to be. This is
because our visual system is very sensitive to variationshading, and so using at shading
makes faces really look at.

9.2 Interpolative Shading

The idea ofinterpolative shadingis to avoid computing the full lighting equation at each pixg
interpolating quantites at the vertices of the faces.

Given vertice9, p2, andps, we need to compute the normals for each vertex, computethe r
ances for each vertex, project onto the window in device dioates, and Il the polygon using
scan conversion.
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There are two methods used for interpolative shading:

Gouraud Shading The radiance values are computed at the vertices and thearlirinterpo-
lated within each triangle. This is the form of shading irmpéated in OpenGL.

Phong shading The normal values at each vertex are linearly interpolatigtimveach triangle,
and the radiance is computed at each pixel.

Gouraud shading is more ef cient, but Phong shading is moceiate. When will Gouraud shad-
ing give worse results?

9.3 Shading in OpenGL

OpenGL only directly supports Gouraud shading or at shgdi@ouraud is enabled by default,
computing vertex colors, and interpolating colors acraasgle faces. Flat shading can be enabled
with glShadeModel(GL _FLAT). This renders an entire face with the color of a single vertex
giving a faceted appearance.

Left: Flat shading of a triangle mesh in Open@ight: Gouraud shading. Note that the mesh
appears smooth, although the coarseness of the geomeitsibie at the silhouettes of the mesh.

With pixel shadern programmable graphics hardware, it is possible to aehlirhong shading
by using a small program to compute the illumination at eaghlpvith interpolated normals. It
is even possible to userermal mapto assign arbitrary normals within faces, with a pixel shtade
using these normals to compute the illumination.
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10 Texture Mapping

10.1 Overview

We would like to give objects a more varied and realistic @paece through complex variations
in re ectance that convey textures. There are two main ssiof natural texture:

Surface markings — variations mbedo(i.e. the total light re ected from ambient and
diffuse components of re ection), and

Surface relief — variations in 3D shape which introducesle@riability in shading.

We will focus only on surface markings.

Examples of surface markings and surface relief

These main issues will be covered:
Where textures come from,
How to map textures onto surfaces,
How texture changes re ectance and shading,
Scan conversion under perspective warping, and

Aliasing

10.2 Texture Sources
10.2.1 Texture Procedures

Textures may be de ned procedurally. As input, a procederpiires a point on the surface of
an object, and it outputs the surface albedo at that poirdnikes of procedural textures include
checkerboards, fractals, and noise.
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A procedural checkerboard pattern applied to a teapot. fbekerboard texture comes from the
OpenGL programming guide chapter on texture mapping.

10.2.2 Digital Images

To map an arbitrary digital image to a surface, we can de néure coordinategu;v) 2 [O; 1].
For each poinfug; Vo] in texture space, we get a point in the corresponding image.

0, 1) (l,.l]

[ J [ J
(0, 0) (1,0
Texture coordinates of a digital image

10.3 Mapping from Surfaces into Texture Space

For each face of a mesh, specify a pdint; ;) for vertexp;. Then de ne a continuous mapping
from the parametric form of the surfasg¢; ) onto the texture, i.e. de nen such that(; )=

m(; ).

Example:
Foraplanar patch(; )= po+ @& + B wherel 1 andO 1
Thenwe coulduse = and =
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Example:
For a surface of revolutiors(; ) = (c( )cos( );c( )sin( );c( )). So let
0 1andO 2.
Then = and = =2 .
A (1, 1)
3D surface Texture space Image

10.4 Textures and Phong Re ectance

Scale texture values in the source image to be in the r@nge 1 and use them to scale the
re ection coef cientsry andr,. That is,

Fg = TIg
Fa = gl

We could also multiply by the specular re ection, in which case we are simply scpinfrom
the Phong model.

10.5 Aliasing

A problem with high resolution texturing is aliasing, whiobcurs when adjacent pixels in a ren-
dered image are sampled from pixels that are far apart intareekmage. By down-sampling—
reducing the size of a texture—aliasing can be reduced foavisy or small objects, but then
textured objects look blurry when close to the viewer. Whatreadly want is a high resolution
texture for nearby viewing, and down-sampled textures fstadt viewing. A technique called
mipmappinggives us this by prerendering a texture image at sever&rdiit scales. For example,
a 256x256 image might be down-sampled to 128x128, 64x64332k6x16, and so on. Then it
is up to the renderer to select the correct mipmap to reduasig artifacts at the scale of the
rendered texture.
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An aliased high resolution texture image (left) and the stereire after mipmapping (right)

10.6 Texturing in OpenGL

To use texturing in OpenGL, a texturing mode must be enalffed.displaying a 2D texture on
polygons, this is accomplished with

glEnable(GL_TEXTURE_2D);

The dimensions of texture in OpenGL must be powers of 2, atidrecoordinates are normalized,
so that(0; 0) is the lower left corner, andll; 1) is always the upper right corner. OpenGL 2.0,
however, does allow textures of arbitrary size, in whichec&xture coordinates are based on the
original pixel positions of the texture.

Since multiple textures can be present at any time, thereexturender with must be selected. Use
glGenTextures  to create texture handles agi@indTexture  to select the texture with a given
handle. A texture can then be loaded from main memory wiithximage2D For example:

GLuint handles[2];
glGenTextures(2, handles);

gIBindTexture(GL_TEXTURE_2D, handles[0]);
/I Initialize texture parameters and load a texture with gIT eximage2D

gIBindTexture(GL_TEXTURE_2D, handles[1]);
/I Initialize texture parameters and load another texture
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There are a number of texture parameters that can be seetd #fé behavior of a texture, using
glTexParameteri . For example, texture wrap repeating can be enabled to all@xture to be
tiled at the borders, or the minifying and magnifying funcis can be set to control the quality of
textures as they get very close or far away from the camera.t&@tture environment can be set
with giTexEnvi , which controls how a texture affects the rendering of theapives it is attached
to. An example of setting parameters and loading an imadmsi

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODLATE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER , GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_ REPEAT)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_ CLAMP)

glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, imageWidth, imag eHeight,
0, GL_RGB, GL_UNSIGNED_BYTE, imagePointer);

Mipmaps can be generated automatically by using the GLUtioimgluBuild2DMipmaps  in-
stead ofglTeximage2D .

Once a texture is bound and texturing is enabled, texturedowaies must be supplied for each
vertex, by callingglTexCoord beforeglVertex

glTexCoord2f(u, v);
glVertex3f(x, y, z);

When textures are no longer needed, they can be removed fgraiphics hardware memory
with

glDeleteTextures(2, handles);
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11 Basic Ray Tracing

11.1 Basics

So far, we have considered ongcal models of illumination; they only account for incident
light coming directly from the light sources.

Global models include incident light that arrives from other soefs, and lighting effects
that account for global scene geometry. Such effects ieclud

— Shadows

— Secondary illumination (such as color bleeding)

— Re ections of other objects, in mirrors, for example
Ray Tracing was developed as one approach to modeling theniegpof global illumina-
tion.
The basic idea is as follows:
For each pixel:

— Cast a ray from the eye of the camera through the pixel, andhedrst surface hit by

the ray.

— Determine the surface radiance at the surface intersewiibra combination of local
and global models.

— To estimate the global component, cast rays from the sudaice to possible incident
directions to determine how much light comes from each twac This leads to a
recursive form for tracing paths of light backwards from $kieface to the light sources.

Aside:
Basic Ray Tracing is also sometimes called Whitted Ray Traciitey, s inventor
Turner Whitted.

Computational Issues
Form rays.
Find ray intersections with objects.
Find closest object intersections.
Find surface normals at object intersection.

Evaluate re ectance models at the intersection.
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11.2 Ray Casting
We want to nd the ray from the eye through pixg]j ).

Camera Model

eV is the origin of the camera, in world space.

4, ¥, andw are the world space directions corresponding tahg andz axes in eye space.
The image planeisdenedbyp r) w=0,orr + atd+ by wherer = eV + fw.

Window

A window in the view-plane is de ned by its boundaries in cameoordinatesw;, w;, W,
andw,. (In other words, the left-most edge is the lijva; ;f ).)

Viewport

Let the viewport (i.e., output image) have colunthsn, 1and rows0:::n, 1. (0;0)is
the upper left entry.

The camera coordinates of piXglj ) are as follows:

pS = (wi+i uw+j vif)

W, Wi
u =
ne 1
W, W
V= b t
n 1
In world coordinates, this is:
o . . .1

I
A = @u v whpf v e
1))
Ray: Finally, the ray is then de ned in world coordinates atofes:

r( )= p?{}/‘* o

whered;; = p}’}’ eV. For > 0, all points on the ray lie in front of the viewplane along a
single line of sight.

11.3 Intersections

In this section, we denote arayigs) = a+ o, > 0.
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11.3.1 Triangles

De ne a triangle with three point$y, p., andps. Here are two ways to solve for the ray-triangle
intersection.

Intersectr ( ) withthe plangp p1) A=0fora=(p>. p1) (ps p.) by substituting
r( ) for pand solving for . Then test the half-planes for constraints. For example:

(a+ & py) Bn=0

_(p. & A
adn

What does it mean whedh A= 0? What does it mean whéh7=0 and(p; a) A=0?

Solve for and wherep(; J)pr+ (P2 pu)+ (pz po),le.r( )= a+ d=
pt+ (P2 p)+ (ps p1). Thisleads to the 3x3 system
0 . : .10 1
J J J
@ (p p) (s p) TAC@ A=(p 3
j ] j
Invert the matrix and solve for, , and . The intersection is in the triangle when the
following conditions are all true:
0
0
+ 1

11.3.2 General Planar Polygons

For general planar polygons, solve for the intersectiom thie plane. Then form a rag(t) in

the plane, starting at the intersection ). Measure the number of intersections with the polygon
sides fort > 0. If there is an even number of intersections, the intersadti inside. If the number
of intersection is odd, it is outside.

Aside:
This is a consequence of the Jordan Curve Theorem. As relatibistproblem, it
states that two points are both inside or both outside whendmber of intersections
on a line between them is even.

Copyright ¢ 2005 David Fleet and Aaron Hertzmann 66



CSC418/CSCD18/CSsC2504 Basic Ray Tracing

11.3.3 Spheres

De ne the unit sphere centereda@by jjp ¢jj?=1.
Substitute a point on the ray ) into this equation:

(@a+ @ ¢ (a+ @ ¢ 1=0
Expand this equation and write it in terms of the quadratiofo

A2+2B +C=0
A=a da
B=(a ¢ @
C=(a ¢ (a 0o 1

The solution is then:
p——— p_—
2B 4B2  4AC B D
= — —D=B? A
2A A A’ =

If D < O, there are no intersections.Df = 0, there is one intersection; the ray grazes the sphere.
If D> 0, there are two intersections with two values for ; and ».

WhenD > 0, three cases of interest exist:

1< 0and ; < 0. Both intersections are behind the view-plane, and are sdilei
1> 0and , < 0. Thep( ;) is a visible intersection, byd{ ;) is not.
1> sand , > 0. Both intersections are in front of the view-plan#. ,) is the closest
intersection.
11.3.4 Af nely Deformed Objects

Proposition: Given an intersection method for an object, it is easy tersdct rays with af nely
deformed versions of the object. We assume here that the &famsformation is invertible.

Let F(y) = 0 be the deformed version {x) = 0, wherey = Ax + t.
ie.F(y)=f(A Yy 1)=0,soF(y)=0iff f(x)=0.

Given an intersection method fé(x) = 0, nd the intersection off( ) = a+ & and
F(y) =0, where > 0.

Solution: Substituter( ) into the implicit equatiord = F(y):

F@()) f Alr() t
f(A Y(a+ d 1)
f(@+ @
f(ry))
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where
a=A (a 9
a°= A a

i.e. intersectind (y) with r( ) is like intersecting (x) withrq )= a°+ d°where > 0.
The value of found is the same in both cases.

Exercise: Verify that, at the solution , with an af ne deformationy = Ax + t, that
r( )=Arq{ )+t

11.3.5 Cylinders and Cones
A right-circular cylinder may be de ned by? + y> = 1 for jzi 1. A cone may be de ned by

x?+y? 21 z)=0for0 z 1

Find intersection with "quadratic wall,” ignoring consitnts onz, e.g. using<> + y2 =1 or
x>+ y?> (1 2% =0. Then test the component op( ) against the constraint an
eg.z 1lorz<1

Intersect the ray with the planes containing the base oreap ¢ = 1 for the cylinder).
Then test thex andy components op( ) to see if they satisfy interior constraints (e.g.
x? + y? < 1for the cylinder).

If there are multiple intersections, then take the inteisaavith the smallest positive (i.e.,
closest to the start of the ray).
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11.4 The Scene Signature

The scene signature is a simple way to test geometry inteyegoethods.

Create an image in which pixél;j ) has intensityk if objectk is rst object hit from ray

through(i;j ).

Each object gets one unique color.

Note:
Pseudo-Code: Scene Signature

< Construct scene modelf=obj, (A;t), objiDg >
sig: array[nc, nr] of objID
for j=0to nr-1 (loop over rows)
for i=0to nc-1 (loop over columns)
< Constructray ( )= p; + (pj  €) through pixelp;
g1
loop over all objects in scene, with object identi ers objID
< nd forthe closest intersection of the ray( ) and
if >0and < j then

13
sig[i,j].objID objID,
endif
endloop
endfor
endfor

>

the object

11.5 Efciency

Intersection tests are expensive when there are large marabebjects, and when the objects are

quite complex! Fortunately, data structures can be useddiol #&esting intersections with objects

that are not likely to be signi cant.

Example: We could bound a 3D mesh or object with a simple bounding vel@eng. sphere or

cube). Then we would only test intersections with objecthére exists
with the bounding volume.

Example: We could project the extent onto the image plane so you
determine potential for intersections.
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11.6 Surface Normals at Intersection Points

Once we nd intersections of rays and scene surfaces, an@éleetshe rst surface hit by the ray,

we want to compute the shading of the surface as seen frorayh&at is, we cast a ray out from
a pixel and nd the rst surface hit, and then we want to knownhmuch light leave the surface
along the same ray but in the reverse direction, back to theeca

Toward this end, one critical property of the surface geoyntitat we need to compute is the
surface normal at the hit point.

For mesh surfaces, we might interpolate smoothly from famenals (like we did to get
normals at a vertex). This assumes the underlying surfasma®th.

Otherwise we can just use the face normal.

For smooth surfaces (e.g. with implicit forrhg§p) = O or parametric forms(; )), either

take
_ rf(

i f(pii
or

@
e o .
ie gi

11.6.1 Af nely-deformed surfaces.

Letf (p) = O be an implicit surface, and I(p) = Ap+ tbe an af ne transformation, wher
is invertible. The af nely-deformed surface is

F(@=7(Q *(M="f(A *(p 1)=0 (42)

A normal of F at a pointqis given by

A Tn

A T
whereA T = (A 1)T andnis the normal of atp= Q 1(q).

(43)

Derivation:
Lets = r( ) be the intersection point, and lgd s) A = 0 be the tangent plane
at the intersection point. We can also write this as:

(p 9)'A=0 (44)
Substituting ing= Ap+ tand solving gives:

(P 9™ = (A g 1) 9)'n (45)
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= (9 (As+1)'A 'n (46)

In other words, the tangent plane at the transformed poigtritgamalA T+ and
passes through poifa s + t).

preserved so the tangent plane on the deformed surfacesisigpfA (q t))"n=
D.

This is the equation of a plane withit normaljjﬁ—lzjj.

11.7 Shading

Once we have cast a ray through pipgl in the directiond;; , and we've found the closest hit
point p with surface normah, we wish to determine how much light leaves the surfageiato
the direction di; (i.e., back towards the camera pixel). Further we want relsath the light
from light sources that directly illuminate the surface aslvas secondary illumination, where
light from other surfaces shines on the surfacp.akhis is a complex task since it involves all of
the ways in which light could illuminate the surface from different directions, and the myriad
ways such light interacts with the surface and it then enhittere ected by the surface. Here we
will deal rst with the simplest case, known widely as WhittBay Tracing.

Aside:

First, note that if we were to ignore all secondary re ectitren we could just com-
pute the Phong re ectance model@and then color the pixel with that value. Such
scenes would look similar to those that we have renderedjwsiading techniques
seen earlier in the course. The main differences from eadreering techniques are
the way in which hidden surfaces are handled and the lackefgalation.

11.7.1 Basic (Whitted) Ray Tracing

In basic ray tracing we assume that that the light re ectednfithe surface is a combination of
the re ection computed by the Phong model, along with onemonent due to specular secondary
re ection. That is, the only re ection we consider is thatedto perfect mirror re ection. We
only consider perfect specular re ection for computatioegciency; i.e., rather than consider
secondary illumination gt from all different directions, with perfect specular retean we know
that the only incoming light gt that will be re ected in the direction d;; will be that coming from
the corresponding mirror direction (i.ens = 2(d; A))A+ d;). We can nd out how much
light is incoming from directiormms be casting another ray into that direction frprand calculating
the light re ected from the rst surface hit. Note that we leaust described a recursive ray tracer;
i.e., in order to calculate the re ectance at a hit point wed& cast more rays and compute the
re ectance at the new hit points so we can calculate the inegriight at the original hit point.

In summary, for basic (Whitted) ray tracing, the re ectancedal calculation comprises:
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A local model (e.g., Phong) to account for diffuse and ofisapecular re ection (highlights)
due to light sources.

An ambient term to approximate the global diffuse composent

Castrays fronpinto directionms = 2(0; 1))R+ d; to estimate ideal mirror re ections
due to light coming from other ojects (i.e., secondary réi@u).

Forarayr( ) = a+ dwhich hits a surface point poitwith normals, the re ectance is given
by
E =rala+t ralgmax(O;f 8+ rslsmax(0;€ m) + rglgpec

wherer ,, 14, andrg are the re ection coef cients of the Phong model, 14, andl ¢ are the light
source intensities for the ambient, diffuse and speculangeof the Phong modes is the light
source direction fronp, the emittant direction of interestts= g, andm = 2(s f))A Sis
the perfect mirror direction for the local specular re @cti Finally,| spec is the light obtained from
the recursive ray cast into the directiem to nd secondary illumination, and, is the re ection
coef cient that determines the fraction of secondary illoation that is re ected by the surface at
p

11.7.2 Texture

Texture can be used to modulate diffuse and a mbient re pcib@f cients, as with Gouraud
shading.

We simply need a way to map each point on the surface to a poiexiure space, as above,
e.g. given an intersection poipt ), convertinto parametric forrs(; ) andusg; )to
nd texture coordinate$ ; ).

Unlike Gouraud shading, we don't need to interpol@te ) over polygons. We get a new
(; ) for each intersection point.

Anti-aliasing and super-sampling are covered in the ugtron Ray Tracing notes.

11.7.3 Transmission/Refraction

Light that penetrates a (partially or wholly) transparamtace/material is refracted (bent),
owing to a change in the speed of light in different media.

Snell's Law governs refraction:
sSin 1 G

sin , ©
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The index of refraction is the ratio of light speedsc. For example, the index of refraction
flozr3 passing from air to water '% = 1:33, and for passing from air to glass, |tég%;;; =
Note: There is also a wavelength dependence. We ignoredhes h

Example:
— If ¢; < ¢y, light bends towards the normal (e.g. air to water)c,lK c1, light bends
away from the normal (e.g. water to air).

— The critical angle ¢, whenc, > c;,iswhen ;! .and ,! 90 Beyond ;, ;>
and total internal re ection occurs. No light enters the emtl.

Cy

Remarks:

— The outgoing direction is in the plane of the incoming di@etandA. This is similar
to the perfect specular direction.

— When ; =0, then , =0, i.e. there is no bending.
For ray tracing:
— Treat global transmission like global specular, i.e. casti@y.
— Need to keep track of the speed of light in the current medium.

11.7.4 Shadows

A simple way to include some global effects with minimal waslo turn off local re ection
when the surface poimtcannot see light sources, i.e. whers in shadow.

When computinde atp, cast a ray toward the light source, i.e. in the direcgen(| p).
pY()=p"+ (Y pY)

Find the rst intersection with a surface in the scene. Ifat the rst intersection point is
0 1, then there exists a surface that occludes the light souoefd.

— We should omit diffuse and specular terms from the local Bhondel.
— The surface radiance ptbecomes

E = ra|a+ rglspec
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Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i)
< computeray;( )= p;j + d; whered; = p; € >
| =rayTrace@; ; G;; 1);
setpixel(, j,1)

endfor

rayTrace( a, b, depth)
ndFirstHit( a, b, output varobj, , p, 1)
if > 0 then
| =rtShade(objp, r, Db, depth)
else
| =background;
endif
return( )

ndFirstHit ( a, b, output varOBJ, 4, pn, ftn)
h= 1
loop over all objects in scene, with object identi ers objID
< nd forthe closest legitimate intersection of rgy( ) and object>
if ( h<O0or < py)and > 0 then
h =
ph=a+ Db,
< determine normal at hit poimt, >
OBJ = objID,
endif
endloop
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Note:

rtShade(OBJ,p, 1, e, depth)
/* Local Component */
ndFirstHit( p, ™ p, output vartemp, );
if 0< <1 then
I, = ambientTerm;
else
I, = phongModelp, r, de, OBJ.localparams)
endif
/* Global Component */
if depth< maxDepth then
if OBJ has specular re ection then
< calculate mirror directiomgs = T +21 dh >
I spec = rayTrace(, ms, depth+1)
< scalel spec by OBJ.specularRe Coef
endif
if OBJ is refractive then
< calculate refractive direction >
if not total internal re ection then
lefr =rayTrace(,t, depth+1)
< scalel s, by OBJ.refractiveRe Coef>
endif
endif
lg = Ispect lrefr
else
lg=0
endif
return; + lg)
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12 Radiometry and Re ection

Until now, we have considered highly simpli ed models angaithms for computing lighting and
re ection. These algorithms are easy to understand and eamplemented very ef ciently; how-
ever, they also lack realism and cannot achieve many impioviaual effects. In this chapter, we
introduce the fundamentals of radiometry and surface tamce that underly more sophisticated
models. In the following chapter, we will describe more athed ray tracing algorithms that take
advantage of these models to produce very realistic andaiennany real-world phenomena.

12.1 Geometry of lighting

In our discussion of lighting and re ectance we will make st simplifying assumptions. First,
we will ignore time delays in light propagation from one @do another. Second, we will assume
that light is not scattered nor absorbed by the median threwgch it travels, i.e., we will ignore
light scattering due to fog. These assumptions allow usc¢ag®n thegeometryof lighting; i.e.,
we can assume that light travels along straight lines, aodriserved as it travels (e.g., see Fig. 1).

Light Tube

@ 4

Figure 4: Given a set of rays within a tube, passing throdigitndB but not the sides of the tube,
the ux (radiant power) afA along these rays is equal to thaBatllong the same set of rays.

Before getting into the details of lighting, it will be usefid introduce three key geometric con-

cepts, namelydifferential areassolid angleandforeshortening Each of these geometric concepts
is related to the dependence of light on the distance andtatien between surfaces in a scene
that receive or emit light.

Area differentials: We will need to be able describe the amount of lighting thtirfy an area
on a surface or passing through a region of space. Integratimctions over a surface requires
that we introduce aarea differentialover the surface, denote. Just as a 1D differentiatik)
represents an in nitesimal region of the real line, an aréfemntial represents an in nitesimal
region on a 2D surface.

Example:
Consider a rectangular patéin thex y plane. We can specify points in the patch
in terms of arx coordinate and g coordinate, withx 2 [Xo; X1]; Y 2 [Yo; Y1]- We ca
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divide the plane intdtNM rectangular subpatches, tipeth subpatch bounded by

Xi X X+ X 47)
Yo Yy Yty (48)

wherei 2 [0::N 1) 2 [0::M 1], x=(X1 Xg)=Nand y=(y: VYo)=M.
The area of each subpatchAg; = x y.InthelimitasN 'l andM !'1

dA = dxdy (49)

To compute the area of a smooth surf&aeave can break the surface into many tiny
patcheqi;j ), each with ared,;; , and add up these individual areas:

X
Area(S) = Ai;j (50)

i
In the planar patch above, the area of the patch is:
X
Area(S)= Ay =NM x y=(x1 Xo)(Y1 Yo) (51)
i
Computing these individual patch areas for other surfacds cult. However, tak-
ing the in nite limit we get the general formula:

Z
Area(S)= dA (52)
S
For the planar patch, this becomes:
Z Z,Z,,
dA = dxdy = (X1 Xo)(Y1 Yo) (53)
S Yo  Xo

We can create area differentials for any smooth surfaceufately, in most radiometry applica-
tions, we do not actually need to be able to do so for anythihgrahan a plane. We will use area
differentials when we integrate light on the image sensabichy happily, is planar. However, area
differentials are essential to many key de nitions and @pts in radiometry.

Solid angle: We need to have a measureasfgular extenin 3D. For example, we need to be
able to talk about what we mean by the eld of view of a camenral we need a way to quantitfy
the width of a directional light (e.g., a spot light).
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Let's consider the situation in 2D rst. In 2D3ngular extents just the angle between two direc-
tions, and we normally specify angular extentawdlians In particular, the angular extent between
two rays emanating from a poigtcan be measured using a circle centereagj Htat is, the angular
extent (in radians) is just the circular arc lengtbf the circle between the two directions, divided
by radiusr of the circle,|=r (see Fig. 5). For example, the angular extent of an entiodediraving
circumferenc& r isjust2 radians. A half-circle has arclength and spans radians.

‘ I
Figure 5: Angular extent in 2D is given byr (radians).

In 3D, the corresponding quantity to 2D angular extent itedadolid angle Analogous to the 2D
case, solid angle is measured as the areba patch on a sphere, divided by the squared radius of
the sphere (Figure 6); i.e., a
r2
The unit of measure for solid angle is thteradian(sr). A solid angle o2 steradians corresponds
to a hemisphere of directions. The entire sphere has a sujji¢ ®f4 sr. As depicted in Figure
2, to nd the solid angle of a surfac® with respect to a poing, one projectsS onto a sphere of
radiusr, centered at}, along lines througly. This gives usa, so we then divide by? to nd the
solid angle subtended by the surface. Note that the solittaig patch does not depend on the
radiusr, since the projected areas proportional tar2.

(54)

Figure 6: The solid angle of a patéhs given by the area of its projection onto a sphere of radius
r, divided by the squared radius,

Note:
At a surface point with normat, we express the hemisphere of incident and emittant
directions in spherical coordinates. That is, directionge hemispherd are

o= (sin cos; sin sin; cos )" (55)
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where 2 [0; =2] denotes the angle betwedrand the normal, and 2 [ ; )
measures the direction projected onto the surface.

With direction expressed in this way one can write the inesimal solid angle as
d =sin dd (56)
The in nitesimal solid angle is an area differential for theit sphere.

To see this, note that forheld xed, if we vary we trace out a circle of radiusn
that is perpendicular ta. For a small change , the circular arc has lengin d ,
and therefore the area of a small ribbon of angular wititis justsin d d

sing d

1\dj

This also allows us to compute the nite solid angle for a ageof visual direction,

such as g 1and g 1. That is, to compute the solid angle we just
integrate the differential solid angle over this region amé spherer( = 1):
Z 1 Z 1
I = sin d d (57)
Z 01 0
= cosj d (58)
0
= (1 0)(COS o  COs 1) (59)

(Assuming we are in the quadrant where this quantity is pe3it

Foreshortening: Another important geometric property fisreshorteningthe reduction in the
(projected) area of a surface patch as seen from a partipalat or viewer. When the surface
normal points directly at the viewer its effective size {@angle) is maximal. As the surface
normal rotates away from the viewer it appears smaller (€igl). Eventually when the normal
is pointing perpendicular to the viewing direction you dee patch “edge on”; so its projection is
just a line (with zero area).

Putting it all together:  Not surprisingly, the solid angle of a small surface patchhwespect
to a speci ¢ viewing location, depends on both on the distaitom the viewing location to the

patch, and on the orientation of the patch with respect twigawging direction.
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~Acoy dAcoy

Figure 7: Foreshortening in 2eft: For a patch with ared, seen from a poing, the patch's
foreshortened area is approximat@lygos . This is an approximation, since the distamogries
over the patch. The angleis the angle between the patch normal and the directiap ®ight:
For an in nitesimal patch with aredA, the foreshortened area is exaadlx cos .

Let g be the point (such as a light source or a viewer) about whictvarg to compute solid angle.
Let p be the location of a small planar surface pa&ctvith areaA at distance = jjg pjj from

g. Additionally, suppose the surface normal points direatlyg (Figure 8). In this case, we can
imagine drawing a hemisphere abowith radiusr, and the projected areeof this patch will be
approximatelyA. Hence, the solid angle  A=r2. In other words, the solid angle is inversely
proportional to distance squared; a more distant objeatwbs less off's “ eld of view.” This is

an approximation, however, since the distangaries over the patch. Nevertheless, if we consider
the limit of an in nitesimal patch with aredA, then the solid angle is exactti} = dA=r2.

When the surface normal does not point directlyg,atoreshortening plays a signi cant role. As
the surface normal rotates away from the directioig of p, the surface, as viewed from poigt
becomes smaller; it projects onto a smaller area on a spkatered at. sphere. So, we say that
the area of the patch, as seen frgnis foreshortenedMore formally, let be the angle between
the normaln and directiong p. Then, for our in nitesimal surface with aref, the solid angle

subtended by the tilted patch is
_ dAcos

r2
The cosine term should look familiar; this is the same coséme used in Lambertian shading
within the Phong model.

d! : (60)

Figure 8: Solid angle of a patch.eft: A patch with normal pointing at Right: A patch with
arbitrary orientation.
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12.2 Elements of Radiometry

The eld of radiometry concerns the measurement of lighe¢glbomagnetic radiation), usually
restricted to the visible wavelengths, in the range 400#00 Light is often measured in discrete
units called photons. It is dif cult to talk about the numbef photons that illuminate a point
on a surface at a particular time (as it is almost always zdrstead, we talk about the average
number of photons in small (in nitesimal) intervals of sgaar time, that is, we talk about photon
density, and thereby treat light as a continuous quantttyerahan a photon count. In effect, we
are assuming that there is enough light in the scene so thatawereat light as a continuous
function of space-time. For example, we will talk about tigiat hitting a speci ¢ surface patch as
a continuous function over the patch, rather than disciesdigtrete photons of light.

12.2.1 Basic Radiometric Quantities

Formally, we describe light in terms eoé&diant energy You can think of radiant energy as the

totality of the photons emitted from a body over its entireface and over the entire period of

time it emits light. Radiant energy is denoted®{t) and measured in Joules (J). You can think of
radiant energy as describing how much light has been enfitbed (or received by) a surface up

to a timet, starting from some initial timé. 2

The main quantity of interest in radiometry power, that is, the rate at which light energy is
emitted or absorbed by an object. This time-varying quantisually calledux, is measured in
Joules per second (3 1). Here we denote ux by( t):

dQ(t)

(t)= T (61)
We can compute the total light that hits a surface up to tiae
YA t
Q(t) = ( )d (62)

0

Flux is suf ciently important that we de ne a special unit afeasure for it, namely, watts (W).

One watt is one Joule per second; so a 50 watt light bulb dr@dbenergy per second. Most
of this radiant energy is emitted as visible light. The restonverted to thermal energy (heat).
Higher wattage means a brighter light bulb.

Not surprisingly, the light received or emitted by an objeaties over the surface of the object.
This is important since the appearance of an object is ofésed on how the light re ected from

20f course, radiant energy depends on wavelenggo it is common to express energy as a function of wavelength
the resulting density functiol@Q( ), is called spectral energy. This is important since diffiérgavelengths are seen
as different colours. Nevertheless, our next major singaliion will be to ignore the dependence of radiant energy on
wavelength. In computer graphics, colours are controllethk relative amounts of power in three separate spectral
bands, namely, Red, Green, and Blue. What we describe inttajger can be applied to each colour channel.
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its surface depends on surface position. Formally, lrgheivedat the surface of an object, as a
function of image position is calledradiance The lightemittedfrom a surface, as a function of
surface position, is often callgddiant exitancgor radiosity).

Irradiance, the incident ux, as a function of surface piositp, is denoted byH (p). Remember,
we cannot talk about the amount of light received at a singietn a surface because the number
of photons received at a single point is generally zero.ebutirradiance is the spatial density of
ux, i.e., the amount of light per unit surface area. The gr of irradiance over the surface of an
object gives us the total incident ux (i.e., received byg thbject. Accordingly, irradiance is the
spatial derivative of ux. For smooth surfaces we write

d

H(P) = & (63)

wheredA refers to differential surface area. Irradiance is just@oper unit surface area (\W 2).

Example:
For a planar patch in thre y plane, we can write irradiance as a functior(xify)
position on the patch. Also, we hadé = dxdy. In this case:

d2
dxdy

H(x;y) = (64)

These terms are all functions of tinhesince lighting may change over time However, we will
leave the dependence on timenplicit in the equations that follow for notational simgliy.

Example:
What is the irradiance, owing to a point light source, on an innitesimal patch
S with area dA? Let's say we have a point light source laemitting | watts per
steradian into all directions:

d= Id! (65)

In other words, the amount of light from this source is prdjooal to solid angle,

and independent of direction. Our goal is to compute theliarsceH on the patch,

which can be done by subtitution of formulas from this chapte
d Id! IdA cos | cos

H:ﬂ: dA = " dArz 2 (66)

wherep is the position ofS, r = jjl  pjj, and is the angle between the surface
normal and the vector p. This formula illustrates the importance of solid angle:
the amount of light hitting a surface is proportional to itgisl angle with respect to
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the light sourceA distant patch (with large) receives less light than a nearby paitch,
and a foreshortened patch receives less light than a frpatah. Furthermore, the
amount of light hitting the patch is proportional to the mgéy | of the light source.

12.2.2 Radiance

Of course the light emitted or received by an object dependssual direction as well as surface
position. For example, objects are often illuminated mooenf above (the sky) than below (the
ground). As a consequence, when the direction of light pyapan is important, we will express
ux as a function of visual direction. This leads to the cahtquantity in radiometry, namely,
radiance Radiance is a measure of the rate at which light energy isennitom a surface in
a particular direction. It is a function of position and ditien, and it is often denoted Wy (or

L (p;d)). Formally, it is de ned as power per steradian per surfaeagW sr 1 m 2), where the
surface area is de ned with respect to a surface patghiadt is perpendicular to the directidih

Normally, one might think of radiance as a measure of the kghitted from a particular surface

location into a particular direction. The de nition abowemore general however. It allows us to
talk about the light travelling in a particular directiorrélugh an arbitrary point in space. In this
case we are measuring surface area with respectittual surface, but we can talk about surface
area nonetheless.

When we talk about the light (radiance) emitted from a paldicsurface into a particular emittant
directiond, we have to be a little more careful because radiance is demi#trespect to a surface
perpendicular to the emittant direction, which is usuathy the same orientation as the actual real
surface in question. Accordingly, often radiance is de asdgower per unfioreshortenedurface
area per solid angle to make explicit the fact that we areguaimirtual surface and not the real
surface to measure area. That is, we are measuring surlscasseen by someone looking at the
surface from somewhere along a ray in the emittant direction

de A ’/\EA = coyy dA
dw " e
a7
dAs , }
dAs

Note:
Computing radiant exitance (radiosity)As mentioned above, radiant exitance is
the total amount of ux leaving a surface into the entire hgphiere of emittant dj-
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rections, as a function of surface position. Intuitivelyjsi the integral of surface
radiance, but we have to be careful; radiance is de ned vapect to unit area oan
a surface perpendicular to the emittant direction rathen timit area on the real sur-
face of interest. Before we can integrate radiance we neededaifg all radianc
guantities in terms of unit surface area on the real surfdoedo this one needs to
multiply radiance for emittant directiod, by the ratio of the surface area normal
to d. (i.e., dA), to the real surface area, denow#;. As discussed above, for an
in nitesimal patch the ratio of these areas is just the fooetening factor, i.e.,

dA = cos dAs = A 0. dAs; (67)
where is the angle between the unit vecterandds..

Taking this foreshortening factor into account, the relatoetween radiant exitance
E (p) and radiancé (p;d) is given by
Z

E(p) = L(p:@) n dd! (68)

a2 .

The domain of integration, ¢, is the hemisphere of possible emittant directions,

Note:
Computing Irradiance: Above we showed that the irradiance on an in nitesimal
surface patcl® at pointp owing to a point light source afwith radiant intensityl
is given by

b = | cos (69)

r2

wherer = jjq pjj is the distance between the light source and the surfacé,patc
and is the angle between the surface normal and the directioheolight source
from the surface patclgq p.
In this case, the radiance @from the point light source directiofi= p qg=r, i.e.,
L (p;d), is simplyl=r2. The factorcos is the foreshortening factor to convert from
area perpendicular to the directidrio area on the surfacg
Accordingly, if we consider radiance atfrom the entire hemisphere of possib
incident directions, then the total irradiancepas given by
z
H(p) = L(p; @ n dd (70)

az

e

(Note that incident directions here are outward facing frpm
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Note:

Radiance vs. Irradiance.Radiance and irradiance are very similar concepts — poth

describe an amount of light transmitted in space — but it gartant to recognize the

distinctions between them. There are several ways of thin&bout the difference;
Radiance is a function of direction; it is power per foreseoetd surface area
per steradian in a speci ¢ direction. Irradiance is incidpower per surfac
area (not foreshortened); it is not a directional quantity.

[¢)

Radiance (Wsr ! m 2) and irradiance (Wm 2) have different units.

Radiance describes light emitted from a surface. Irradigeseribes light in
cident on a surface. Indeed, from the radiance emitted froensarface we can
compute the incident irradiance at a nearby surface.

12.3 Bidirectional Re ectance Distribution Function

We are now ready to explore how to model the re ectance ptazeof different materials. Dif-
ferent objects will interact with light in different wayso8e surfaces are mirror-like, while others
scatter light in a wide variety of directions. Surfaces #tter light often look matte, and appear
similar from different viewing directions. Some objectssalb a signi cant amount of light; the
colour of an object is largely a result of which wavelengthalisorbs and which wavelengths it
re ects.

One simple model of surface re ectance is refered to as tedational re ectance distribution
function BRDF). The BRDF describes how light interacts with a surface forlatikely wide
range of common materials. In intuitive terms, it speci dsat/fraction of the incoming light from
a given incident direction will be re ected toward a givenigamt direction. When multiplied by
the incident power (i.e., the irradiance), one obtains #srdd emittant (i.e., re ected) power.

More precisely, the BRDF is a function of emittant and incidginectionsd, andd;. It is de ned
to be the ratio of radiance to irradiance:

()= - 71

For most common materials the only way to determine the BRDFtls mveasurements. That is,
for a wide range of incident and emittant directions, a nialtés illuminated from one direction
while the re ected light is measured from another directidrhis is often a tedious procedure.
In computer graphics it is more common to design (i.e., maReparametric BRDF formulae,
and then vary the parameters of such models to achieve tivedieppearance. Most parametric
models are based on analytic models of certain idealizednmatg, as discussed below.
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12.4 Computing Surface Radiance

When rendering an image of an object or scene, one wants to kaewnuch light is incident at
each pixel of the image plane. (In effect, one wants to comthg image irradiance.) Fortunately
it can be shown that this quantity is linearly related to tben® radiance. In particular, for a point
on an opaque object in a given visual direction, one simpBdseo compute the radiance from
that point on the surface in the direction of the camera. Baseitie BRDF model of re ectance,
the surface radiance depends on the incident illuminatrcedjance) at the surface, and the BRDF
of course.

Point Light Sources

For example, consider a single point source with radiamnisityl . To compute the irradiance
at a small surface patch we can compute the total ux arriahthe surface, and then divide by
the area of the surface to nd ux per unit area. More pregrsehdiant intensity for the source is
given byl = d =d!. We multiply by the solid angle subtended by the pattho obtain the ux
on the surfacel , and then we divide by the surface a#ato obtaind =dA, that is, irradiance
as in Egn (63). For a point light source this was shown abcee Egn. (66)) to be given by

A G
r2

H =1 (72)
wheren is the unit surface normati is the unit vector in the direction of hte light source frore th
surface patch, andis the distance from the patch to the light source.

We now want to compute the radiance from the surface (ewartbthe camera). Toward this end,
we multiply the irradiancéd by the BRDF, (0.; @;), in order to nd radiance as a function of the
emittant direction:

A G

L(p;Ge) = (Ge; @)1 r2

(73)

This perspective generalizes naturally to multiple lightir€es. That is, the radiance from a point
p on a surface in the direction of the camera is the sum of radmdue to individual light sources.
ForJ point light sources, at locatioris, with intensitied ; , the radiance is given by

L(p;de) = (O, G6) 1

j:]_ J

X A G
— (74)

wherer; = jjl; pjj is the distance to thg" source, andi = (I; p)=r; is the incident direction
of thej ! source.
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Extended Light Sources

Many light sources are not in nitesimal point sources. Rathethe general case we need to be
able to work with extended light sources for which the inaidigght is a continuous function of
incident direction. One way to think of this is to let the nuenlof discrete light sources go to
in nity so that the sum in Egn (74) becomes an integral.

Here we take a slightly different, but equivalent approaék.discussed above, radiance can be
used to express the light energy transport through any pospace, in any direction of interest.
Thus, given a poinp on a surface with unit normad, we can express the radiance thropgiiong
the hemisphere of possible incident directiong §s;d;) for & 2 ; where ; denotes the domain
of plausible incident directions at

Note:

As above, we can erect a spherical coordinate systgm @bward this end, let;
denote an angle measured from the surface normal, and le¢ an angle in th
surface tangent plane about the normal relative to some <iamte vy coordinate
system in the plane. Then all directions

[¢)

d (sin ;cos i;sin jsin ; cos )T (75)

contained in ; satisfy ; 2 [0; =2]and ;2 [ ; ).

One problem with radiance is the fact that it expresses gt lux in terms of power per unit
area on a surface perpendicular to the direction of intefidsis, for each incident direction we are
using a different plane orientation. In our case we want fwress the power per unit area on our
surfaceS, and therefore we need to rescale the radiance in diredtioynthe ratio of foreshortened
surface area to surface area. One can show that this is atisbetpby multiplyingL (p;d;) by
cos i = @ n, for normaln. The result is now the incident power per unit surface ared (n
foreshortened) per solid angle. We multiply this by soliglar! to obtain irradiance:

H = L(p; @)cos;d!; (76)
Therefore, the resulting surface radiance in the direaiidhe camera due to this irradiance is just
(Ge; @) L(p; @) cos ;d!

If we then accumulate the total radiance from the incidéuairilnation over the entire hemisphere
of possible incident directions we obtain
Z

L(Ge) = (de; G) L(p; @) cos id!y (77)

@2
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where, as above, the in nitesimal solid angledis =sin ;d ; d ;.

Light sources vary greatly from scene to scene. In effecermyou take a photograph you are
measuring irradiance at the image plane of the camera fanitetl eld of view (angular extent).
This shows how complex illumination sources can be.

Note:
The ideal point light source can also be cast in the framewbik continuous, ex
tended source. To do this we assume that the distributionaadient light can b
modeled by a scaled Dirac delta function. A Dirac delta fiorct (x) is de ned by:
Z
(x)=0 for x60 ; and (xX)f (x)dx = f(0) (78)

X

D

With the light source de ned as a delta function, Eqn (77)uek to Egn (73).

12.5 Idealized Lighting and Re ectance Models

We now consider several important special instances of BRDéefso In particular, we are in-
terested in combinations of lighting and BRDF models thatitateé ef cient shading algorithms.
We discuss how diffuse and specular surfaces can be repedsenBRDFs.

12.5.1 Diffuse Re ection

A diffuse (or matte) surface is one for which the pattern aidihg over the surface appears the
same from different viewpoints. The ideal diffusely re gxj surface is known as a perfect Lam-
bertian surface. Its radiance is independent of the enitiaection, its BRDF is a constant, and
it re ects all of the incident light (i.e., it absorbs zerower). The only factor that determines the
appearance (radiance) of a Lambertian surface is therdfergradiance (the incident light). In
this case, with the BRDF constan{d,; i) = o, the (constant) radiande, has the form:
Z
La(p;Ge) = o L(p; @) cos ;d!; (79)

a2

Note:

A perfect Lambertian surface re ects all incident light,salbing none. Thereforg,
the total irradiance over the hemisphere of incident dioestmust equal the radiant
exitance. Setting these quantities to be equal, one can #haw, = 1= . The
BRDF for any diffuse surface must therefore have a value betWemndl= .

Despite the simplicity of the BRDF, it is not that simple to cartgothe radiance because we still
have an integral over the hemisphere of incident directi®s let's simplify the model further.
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Let's assume a single point light source with intensitgt locationl. This gives us

A G
La(p;Gc) = ol = (80)

wherer = jjl  pjj is the distance to the light source frggnandd; = (I  p)=r is the direction of
the source fronp. Of course, the surface normaklso changes with.

Eqn (80) is much easier to compute, but we can actually makedmputation even easier. Let's
assume that the point source is suf ciently far away thahdd; do not change much with points
p on the object surface. That is, let's treat them as constdr@n we can simplify Eqn (80) to

La(p) = rgls n (81)

wherer 4 is often called the diffuse re ection coef cient, argis the direction of the source. Then
the only quantity that depends on surface posipasthe surface normai.

Note:
The values 1 should actually benax(0;s f). Why? Consider the relationship [of
the light source and surface when this dot product is negativ

12.5.2 Ambient lllumination

The diffuse shading model in Eqn (80) is easy to compute, heh@ppears arti cial. The biggest
issue is the point light source assumption, the most obvammsequence of which is that any
surface normal pointing away from the light source (i.ex vibich-s # < 0) will have a radiance
of zero. A better approximation to the light source is a umf@ambientterm plus a point light
source. This is a still a remarkably crude model, but it's mbetter than the point source by itself.

With a uniform illuminant and a constant BRDF, it is easy to de& the integral in Eqn (79)
becomes a constant. That is, the radiance does not depehe ondntation of the surface because
the illumination is invariant to surface orientation. Asesult we can write the radiance under a
uniform illuminant as

La(p) = rala (82)

wherer 4 is often called the ambient re ection coef cient, ahgdenotes the integral of the uniform
illuminant.

Note:
If the illuminant is the sum of a point source and a uniformrseuthen the resulting
radiance is the sum of the radiances to the individual seutbat is, the sum of Eqns
(82) and (81).
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12.5.3 Specular Re ection

For specular (mirror) surfaces, the incident light fromteexcident directiord; is re ected toward
a unique emittant directiodf,. The emittant direction lies in the same plane as the intidieaction
d and the surface normal and the angle betweenandd; is equal to that betweemandd;. One

n

di de

can show that the emittant direction is givendlyy= 2(f d)n d;. For all power fromd; be
re ected into a single emittant direction the BRDF for a petfexrror must be proportional to a
delta function, (Ge; ) / (4 (2(1 do)A  do)).

In particular, if we choose the constant of proportionaditythat the radiant emittance is equal to
the total incident power, then the BRDF becomes:
1
(O @) = oy (@ (@2n d)n ) (83)

In this case, Eqn (77) reduces to
Ls(p;de) = L(p; (2(A deo)n  de)) (84)
This equation plays a major role in ray tracing.

Off-Axis Specularity:  Many materials exhibit a signi cant specular component heit re-
ectance. But few are perfect mirrors. First, most speculafaces do not re ect all light, and
that is easily handled by introducing a scalar constant imB¢) to attenuate surface radiance
Second, most specular surfaces exhibit some formwiffedixis specular re ection That is, many
polished and shiny surfaces (like plastics and metals) kghitin the perfect mirror direction and
in some nearby directions as well. These off-axis spedidaiiook a little blurred. Good examples
arehighlightson plastics and metals.

The problem with off-axis specularities is that the BRDF isaroger a simple delta function. The
radiance into a particular emittant direction will now béeated from the incident power over a
range of incident directions about the perfect specul@&ction. This means that, unlike the simple
radiance function in Eqn (84) for perfect measures, we needttrn to the integral in Eqn (77).
Therefore it is not easy to compute radiance in this case.

Like the diffuse case above, one way to simplify the modehwit-axis specularities is to assume
a point light source. With a point light source we can do awdty the integral. In that case the
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light from a distant point source in the direction®fs re ected into a range of directions about
the perfect mirror directionsn=2(1 9f s One common model for this is the following:

Ls(de) = rsl max(0; m de) ; (85)

wherer is called the specular re ection coef cient (often equallto rq), | is the incident power
from the point source, and 0is a constant that determines the width of the specular igigts!.
As increases, the effective width of the specular re ectionrdases. In the limit as increases,
this becomes a mirror.

12.5.4 Phong Re ectance Model

The above components, taken together, give us the well-kriRivong re ectance model that was
introduced earlier:

L(p;0.) = rqglg max(0;8 A) + raly + rglsmax(0; m de) ; (86)
where

la, 14, @andl, are parameters that correspond to the power of the lightesdior the ambient,
diffuse, and specular terms;

ra, rq andrs are scalar constants, called re ection coef cients, thatedmine the relative
magnitudes of the three re ection terms;

determines the spread of the specurlar highlights;
fis the surface normal g
3is the direction of the distant point source;
m is the perfect mirror direction, givenand<s; and

andd; is the emittant direction of interest (usually the direotaf the camera).
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13 Distribution Ray Tracing

In Distribution Ray Tracing (hereafter abbreviated as “DRRBur goal is to render a scene as ac-
curately as possible. Whereas Basic Ray Tracing computed @netg approximation to radiance
at a point, in DRT we will attempt to compute the integral asumately as possible. Additionally,
the intensity at each pixel will be properly modeled as argral as well. Since these integrals
cannot be computed exactly, we must resort to numericajiat®n techniques to get approximate
solutions.

Aside:

When originally introduced, DRT was known as “Distributed Ragicing.” We will
avoid this name to avoid confusion with distributed compgtiespecially because
some ray-tracers are implemented as parallel algorithms.

13.1 Problem statement

Recall that, shading at a surface point is given by:
z

L(@)=  (Gedi(; )LC a(; )(n d)d! (87)

This equation says that the radiance emitted in dirediois given by integrating over the hemi-
sphere the BRDF times the incoming radiandg( dij(; )). Directions on the hemisphere are
parameterized as

d =(sin sin; sin cos; cos ) (88)

The differential solid angld! is given by:
d! =sin dd (89)

and so: Z 4
L(de) = (Ge;Gi(; )L( &(; )(n d)sindd (90)
2[0;2 1 2[0;=2]
This is an integral over all incoming light directions, aneé wannot compute these integrals in
closed-form. Hence, we need to develop numerical techeitueompute approximations.

Intensity of a pixel. Up to now, we've been engaged in a ction, namely, that thensity

of a pixel is the light passing through a single point on angealane. However, real sensors
— including cameras and the human eye — cannot gather ligath ah nitesimal point, due
both to the nature of light and the physical properties ofgesors. The actual amount of light
passing through any in nitesimal region (a point) is in agimal (approaching zero) and cannot
be measured. Instead light must be measured within a re@paci cally, the image plane (or
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retina) is divided up into an array of tiny sensors, each atitvimeasures the total light incident
on the area of the sensor.

As derived previously, the image plane can be parameteazgd; ) = po+ o + ¥. In
camera coordinatepy = (0;0; f ), and the axes correspond to thandy axes:+f = (1;0; 0) and
¥ =(0;1;0). Then, we placed pixel coordinatesonagpf: = (L+i i;T+] [if)=po+ ,
where i =(R L)=ncand j =(B T)=n,, andL;T;B;R are the boundaries of the image
plane.

We will now view each pixel as an area on the screen, rather dhsgingle point. In other words,
pixel (i;j ) is all valuesp(; ) for min < maxs, min <  max- The bounds of each
pixelare: min = L+1i i} max = L+(i+1) 0 mn=T+] jyand max = T+(j +1) j.
(In general, we will set things up so that this rectangle igw@ase in world-space.) For each point
on the image plane, we can write the ray passing through ikes s

. y- PG ) e
R T ER ]
To compute the color of a pixel, we should compute the totditlenergy passing through this

rectangle, i.e., the ux at that pixel:
Z Z

i = H(; )dd (92)

min < max min < max

(91)

whereH (; ) is the incoming light (irradiance) on the image at position . For color images,
this integration is computed for each color channel. Agamgcannot compute this integral exactly.

Aside:
An even more accurate model of a pixel intensity is to weiglgsraccording to ho
close they are to the center of the pixel, using a Gaussiaghtieg function.

<

13.2 Numerical integration

We begin by considering the general problem of computingneegral in 1D. Suppose we wish to
integrate a functiom (x) fromOtoD:
Z D
S= f (x)dx (93)
0

Visually, this corresponds to computing the area underaectRecall the de nition of the integral.
We can break the real line into a set of intervals centeredi&inmly-spaced pointg; :::; Xy . We
can then de ne one rectangle on each interval, each widtN and heightf (x;). The total area
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of these rectangles will be approximately the same as treelarder the curve. The area of each
rectangle if (x;)D=N, and thus the total area of all rectangles together is:
D X
Sy = N f(xi) (94)
i
Hence, we can us8y as an approximation t8. Moreover, we will get more accuracy as we
increase the number of points:

lim Sy = S (95)

N1
There are two problems with using uniformly-spaced samiplesumerical integration:

Some parts of the function may be much more “important” thireis. For example, we
don't want to have to evaluatie(x) in areas where it is almost zero. Hence, you need to
generate many, many values, which can be extremely slow.

Uniformly-spaced samples can leaddbiasing artifacts These are especially noticable
when the scene or textures contain repeated (periodi®rpatt

In ray-tracing, each evaluation b{x) requires performing a ray-casting operation and a recairsiv
call to the shading procedure, and is thus very, very expengiience, we would like to design
integration procedures that use as few evaluatiorigxf as possible.

To address these problems, randomized techniques knowtoake Carlo integration can be
used.

13.3 Simple Monte Carlo integration

Simple Monte Carlo addresses the problem of aliasing, anksnas follows. We randomly sample
N valuesx; in the interval[0; D], and then evaluate the same sum just as before:
D X
Sv=g o) (96)
i
It turns out that, if we have enough samples, we will get jgssaecurate a result as before; more-
over, aliasing problems will be reduced.

Aside:
Formally, it can be shown that the expected valugpfis S. Moreover, the variange
of Sy is proportional td\, i.e., more samples leads to better estimates of the integra

In the C programming language, the random sampling can beutea asand() * D.

Aside:
Monte Carlo is a city near France and Italy famous for a bignzagtence, the name
of the Monte Carlo algorithm, since you randomly sample sooietp and gambl
that they are representative of the function.

4%
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13.4 Integration at a pixel

To compute the intensity of an individual pixel, we need talegate Equation 92). This is a 2D
integral, so we need to determiKe2D points( i; i), and compute:

. X
i;j ( max m|n|)<( max m|n) H( i; i) (97)
i=1
In other words, we picll points withnin the pixel, cast a ray through each point, dethtaverage
the intensities of the rays (scaled by the pixel's aregax min )( " max min ). These samples
can be chosen randomly, or uniformly-spaced.

Example:
The simplest way to compute this is by uniformly-spaced daes(p m; n):
m = (m 1) ; =( max min )=M (98)
no= (n 1) ; =( max min )=N (99)
and then sum:
X
i H( ms n) (100)
m=1 n=1

However, Monte Carlo sampling — in which the samples are ramgcpaced —
will usually give better results.

13.5 Shading integration

Our goal in shading a point is to compute the integral:
Z z
L(d) = (Ge;@i(; )L( a&(; ))(n d)sindd (101)

2[02 ] 2[0;=2]

We can choose uniformly-spaced values @nd values as follows:

m = (m 1) ; =( =2)=M (102)
n= (n 1) ; =2 =N (103)
This divides up the unit hemisphere iftbN solid angles, each with area approximately equal to
sin . Applying 2D numerical integration gives:
X _
L (%) (de;di(; )L &(; )N(n &) sin (104)
m=1 n=1
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Once you have all the elements in place (e.g., the ray-trdeeBRDF model, etc.), evaluating this
equation is actually quite simple, and doesn't requirehaltreatment of special cases required for
basic ray-tracing (such as specular, diffuse, mirror) ektowever, it is potentially much slower to
compute.

13.6 Strati ed Sampling

A problem with Simple Monte Carlo is that, if you use a small tn@mof samples, these samples
will be spaced very irregularly. For example, you might beyvenlucky and get samples that
don't place any samples in some parts of the space. This caddressed by a technique called
strati ed sampling: divide the domain Ij,n'rﬁ -uniformly sized regions, and randomly samgle
pointsx; within each region; then surﬁ} i £ (xi) as before.

13.7 Non-uniformly spaced points

Quite often, most of the radiance will come from a small pathe integral. For example, if the
scene is lit by a bright point light source, then most of thergg comes from the direction to this
source. If the surface is very shiny and not very diffusenthmost of the energy comes from the
re ected direction. In general, it is desirable to samplaexensely in regions where the function
changes faster and where the function values are large. ditera equation for this is:

X
Sv= f(x)d (105)

whered; is the size of the region around poit Alternatively, we can use strati ed sampling,
and randomly samplé values within each region. How we choose to de ne the regiarss
and spaces depends on the speci ¢ integration problem. g>goncan be very dif cult, and, as a
consequence, deterministic non-uniform spacing is ndymakd in graphics; instead, importance
sampling (below) is used instead.

13.8 Importance sampling

The method ofimportance samplingis a more sophisticated form of Monte Carlo that allows
non-uniform sample spacing. Instead of sampling the pointsmiformly, we sample them from
another probability distribution function (PDB}x). We need to design this PDF so that it gives
us more samples in regionsfthat are more “important,” e.g., valuesfofx) are larger. We can
then approximate the integralas:

1K f(x)
TN pxi)

(106)
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If we use a uniform distributionp(x) = 1=D for x 2 [0;D], then it is easy to see that this
procedure reduces to Simple Monte Carlo. However, we canusesomething more sophisti-
cated, such as a Gaussian distribution centered arounaihievge expect to provide the greatest
contribution to the intensity.
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13.9 Distribution Ray Tracer

for each pixel (i,))
< chooseN pointsxy within the pixel's area >
for each sampl&
< computerayg( )= px+ 0k wheredy=px € >
I =rayTrace(y; dx; 1)
endfor =
setpixel(i,j, 1 j 1k=N)
endfor

The rayTrace and ndFirstHit procedures are the same as feicHBgay Tracing. However, the
new shading procedure uses numerical integration:

distRtShadgOBJ,p, f, U¢, depth)
< chooseN directions( ; k) onthe hemisphere>
for each directiork
|« = rayTracep, dyx, depth+1)
endfor
return (@ @i ks k)Iksin
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14 Interpolation

14.1 Interpolation Basics

Goal: We would like to be able to de ne curves in a way that meets thiewing criteria:
1. Interaction should be natural and intuitive.
2. Smoothness should be controllable.
3. Analytic derivatives should exist and be easy to compute.
4. Representation should be compact.

Interpolation is when a curve passes through a set of “control points.”

Figure 9: *
Interpolation

Approximation is when a curve approximates but doesn't necessarily aoitsacontrol points.

Figure 10: *
Approximation

Extrapolation is extending a curve beyond the domain of its control points.

Continuity - A curve is isC" when it is continuous in up to itstN-order derivatives. For example,
acurve is inCt if it is continuous and its rst derivative is also continumu

Consider a cubic interpolant — a 2D cure¢t) = x(t) y(t) where

x(t)
y(t)

ag+ ajt + axt? + agt®; (107)
by + byt + bpt® + bt?; (108)
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Figure 11: *
Extrapolation

SO

x
x(t) = at'= 1ttt g

i=0

é =t'a: (109)

h [ h [
Here,tis the basis andis the coef cient vector. Hence(t) = tT a b :(Note:T a b is
a4 2matrix).

There are eight unknowns, foay values and foulh values. The constraints are the values(of
at known values of.

Example:
Fort 2 (0;1), suppose we know,  c(t;) fort; = 0O; %; %; lasj =1;2;3;4. That
is,
Ct= X1 Y1 x(0) y(@) ; (110)
&= X2 Y2 X(1=3) y(1=3) ; (111)
C3= X3 VY3 x(2=3) y(2=3) ; (112)
Ca= X4 Ya x(1) y@) : (113)
So we have the following linear system,
2 3 2
X1 Y1 1 0 0 0 h i
X5 yzé _ 81 1=3 (1=3y (1=3)3é ,
§x3 ys5 = 41 23 (2mp (empb5 B8P (4
Xa Ya 1 1 1 1
h [ h [

ormore compactly, x ¥ =C a b .Then, a D =C ! x y .From

this we can nd-aand®, to calculate the cubic curve that passes through the given
points.
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We can also place derivative constraints on interpolantesirLet

h i
dc(t) d
~t)= == = — 1tt>2t] ahb (115)
dt dt h i

= 01tt> ahb,; (116)

that is, a different basis with the same coef cients.

Example:
Suppose we are given three poirt{s= 0; %; 1, and the derivative at a poinﬁ(%).
So we can write this as
2 3 2
X1 Y1 1 0 0 0 h i
X2 yzz _ 51 1=2 (1=2)? (1=2)° Z _
§X3 y3 1 1 1 1 a b ) (117)
X3 y9 0 1 2(1=2) 3(1=2)?
and
2 3
C
Cl h i
§ ‘L = C ab; (118)
Cs
~2
which we can use to ndaandb:
2 3
C
h i Cl
a 'b = C 1§ 2 (119)
Cs
~2

Unfortunately, polynomial interpolation yields unintué results when interpolating large num-
bers of control points; you can easily get curves that passitih the control points, but oscillate
in very unexpected ways. Hence, direct polynomial inteapoh is rarely used except in combi-
nation with other techniques.

14.2 Catmull-Rom Splines

Catmull-Rom Splinesinterpolate degree-3 curves wi@' continuity and are made up of cubic
curves.

A user speci es only the pointfp; :::pn] for interpolation, and the tangent at each point is set
to be parallel to the vector between adjacent points. Soahgent af; is (pj.1 P 1) (for
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endpoints, the tangent is instead parallel to the vecton fite endpoint to its only neighbor). The
value of is set by the user, determining the “tension” of the curve.

B
pj +1

Py

Between two pointsp; andp; +1, we draw a cubic curve using, pj+1, and two auxiliary points
onthetangents,(p+1 P 1) and (p+2 B).

We want to nd the coef cientsg; whenx(t)= 1 t t2 t2 a a a a T where the
curve isde ned ag(t) = co(t) y(t) (similarly fory(t) andly). For the curve betwegn and
pj+1, assume we know two end point$0) andc(1) and their tangents{0) and€{1). That is,

x(0) = x;; (120)
X(1) = Xj; (121)
x0) = (X X 1); (122)
X)) = (X2 X)) (123)
To solve forg, set up the linear system,
3 2 32
x(0) 1000 ao
x(l)é gllllégalé_
§x0(0) 010 05445 (124)
xq1) 0123 a
Thenx = M4, soa= M !x Substitutingain x(t) yields
2 32 3
1 0 0 O X;
X(t) 1ttt 3 3 o2 1 (o1 X 1) (125)
2 2 1 1 i+
2 52 %
0 1 0 0 Xj 1
Cveed, o, el
1t t2 t 5 33 o .o & (126)
2 2 Xj+2
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For the rst tangent in the curve, we cannot use the abovedtaninstead, we use:

1 = (P2 po) (127)

and, for the last tangent:

~ = (v Pn 1) (128)
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15 Parametric Curves And Surfaces

15.1 Parametric Curves
Designing Curves
We don't want only polygons.

Curves are used for design. Users require a simple set ofat®mdrallow them to edit and
design curves easily.

Curves should have in nite resolution, so we can zoom in aitidsse a smooth curve.
We want to have a compact representation.

Parametric functions are of the fom(t) = f (t) andy(t) = g(t) in two dimensions. This can be
extended for arbitrary dimensions. They can be used to ntaoteés that are@ot functions of any
axis in the plane.

Curves can be de ned as polynomials, for examp(g) = 5t + 4t° + 3t + :::. However,
coef cients are not intuitive editing parameters, and thearves are dif cult to control. Hence,
we will consider more intuitive parameterizations.

15.2 Bezier curves

We can de ne a set of curves calle@Ber curves by a procedure called the de Casteljau algarithm
Given a sequence of control poimg, de Casteljau evaluation provides a construction of smooth
parametric curves. Evaluation proceeds by repeatedlyidg new, smaller point sequences until
we have a single point at the value tdior which we are evaluating the curve.

Figure 12: de Casteljau evaluation tor 0:25.

) = @ Hpo+tp (129)
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pri(t) = (1 Hpa+ tp (130)
pa(t) = (1 t)p+ tps (131)
Po() = (1 t)p(t) + tpi(t) (132)
= (1 t)’po+2t(1 t)p+ t°p, (133)
pi(t) = (1 t)pi(t) + tpx(t) (134)
= (1 t)°p+2t(1 t)p+ t°ps (135)
po() = (1 t)p(t) + tpi(t) (136)
= (1 t)°%p+3(1 0Xp +3(1 t)t’pp+ tips (137)

The resulting curves is the cubic Bzier de ned by the four control points. The curyggsandp?
are quadratic Bzier curves, each de ned by three control points. For altiBr curves, we keep
in the rangd0:::1].

15.3 Control Point Coef cients

Given a sequence of poings, ps, ..., Pn, We can directly evaluate the coef cient of each point. For
a class of curves known a€Bier curves, the coef cients are de ned by the Bernsteirypomials:

X oo
Po(t) = . (@ D" 'te= Bl(p (138)
i=0 i=0

where
B(t) = rl' @ b it (139)

are called th&ernstein basis functions.

For example, cubic &zier curves have the following coef cients:

B3t = (1 t)° (140)
B3(t) = 3(1 t)% (141)
B3(t) = 3(1 )t? (142)
B31t) = t3 (143)

Figure 13 is an illustration of the cubic Bernstein basis fioms.

Similarly, we de ne basis functions for a linear curve, whits equivalent to the interpolation
p(t) = po(1 t)+ pit. These are shown in Figure 3.
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Figure 13: Degree three basis functions f@zir curvesB3(t) (dark blue),B3(t) (green)B3(t)
(red), andB3(t) (light blue).

Figure 14: Degree one basis functions fa@zger curvesBi(t) (green) and3i(t) (blue).

15.4 Bezier Curve Properties
Convexity of the basis functions.For all values ot 2 [0:::1], the basis functions sum to 1:
X
B'(t)=1 (144)
i=0
In the cubic case, this can be shown as follows:
(1 t+1)=@1 t)®+301 t2+31 vt*+t3=1 (145)
In the general case, we have:
X o
(r v+t = : @a o"'t'=1 (146)
i=0

Similarly, it is easy to show that the basis functions areaglssnon-negativeB(t) 0.
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Af ne Invariance
What happens if we apply an af ne transformation to&@ek&r curve?

P
Letc(t) = j”zo P B'(t), and letF (p) = Ap+ d’be an af ne transformation. Then we have

the following:
Flet) = Ady+d (147)
= A pBI() +d (148)
= i (Ap)Bi()+d (149)
= Ap +d B/(t) (150)
- B'(t)q (151)

g = Ap + ddenotes the transformed points. This illustrates thatrdwestormed curve
we get is the same as what we get by transforming the contmotThe third statement
follows from the fact that [, B/'(t)=1.)

Convex Hull Property

SinceBN (t) 0O, p(t) is a convex combination of the control points. Thug&zkr curves

alwayslie within the convex hull of the control points.

Linear Precision

When the control points lie on a straight line, then the cqesling Ezier curve will also

be a straight line. This follows from the convex hull progert

Variation Diminishing

No straight line can have more intersections with tiéziBr curve than it has with the control
polygon. (The control polygon is de ned as the line segm@s.; .)

Derivative Evaguation
Lettingc(t) =~ L, pB¥ (t), we want to nd the following:

_ de(t) _ dx(t), dy(t)
¢t = dt ~  dt ' dt (152)

Lettingd = pj+1 [, it can be shown that:

d o dX R
(t)—ac(t)—a'oijj (t)_N_OdBj (t) (153)
=
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Figure 15: The line (green) will always intersect the cuesloften than or as many times as the
control polygon.

Thus, c(t) is a convex sum of the pointg and is a point itself. (t) is a convex sum of
vectors and is a vector.

Example: What is (0) whenN = 3, given(po; p1; P2; P3)?

SinceB?(0) = 0 forallj 6 0 andBg(0) = 1,
X
©)=N &B' Y()=38 =3(p1 po) (154)

Therefore, the tangent vector at the endpoint is paralligléaector from the endpoint to the
adjacent point.

Global vs. Local Control

Bézier curves that approximate a long sequence of pointsipeokigh-degree polynomials.
They have global basis functions; that is, modifying anynpohanges the entire curve. This
results in curves that can be hard to control.

15.5 Rendering Parametric Curves

Given a parameter range [0; 1], sample by some partition t, and draw a line connecting each
pair of adjacent samples.

This is an expensive algorithm.
This does not adapt to regions of a curve that do not requinesay samples.

It's dif cult to determine a suf cient number of samples t@mder the curve such that it
appears smooth.

There are faster algorithms based on adaptive re nemensabdivision.
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15.6 Bezier Surfaces

Cubic Bezier patches are the most common parametric surfaces aisetéleling. They are of
the following form:

I SEDS X
s(; )= BY()BR( Ik = B )pe( ) (155)

k=0 j=0 k

where eachp( ) is a Bezier curve:
X
p( )= BP( )P (156)

Rather than considering only four points as in a cub&ziBr curve, consider 16 control points
arranged as a 4 x 4 grid:

Figure 16: Evaluation of any point can be done by evaluatuinges along one direction (blue),
and evaluating a curve among points on these curves witegmonding parameter values.

For any given , generate four points on curves and then approximate themaniBézier curve
along .

X3

p( )= B( )ik (157)

j=0
To connect multiple patches, we align adjacent control {goito ensureC! continuity, we also
have to enforce colinearity of the neighboring points.
The surface can also be written in terms of 2D basis functigjhg ; )= B?( )BZ( ):

x3 3
s(; )= Bj?k( ,)Pik (158)

k=0 j=0
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16 Animation

16.1 Overview

Motion can bring the simplest of characters to life. Evengarpolygonal shapes can convey a
number of human qualities when animated: identity, charagender, mood, intention, emotion,
and so on.

Very simple characters (image by Ken Perlin)

A movie is a sequence of frames of still images. For video fittume rate is typically 24 frames
per second. For Im, this is 30 frames per second.
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In general, animation may be achieved by specifying a modtil w parameters that identify
degrees of freedom that an animator may be interested inagich

polygon vertices,
spline control,

joint angles,

muscle contraction,
camera parameters, or

color.

With n parameters, this results in a veci@in n-dimensional state space. Parameters may be
varied to generate animation. A model's motion is a trajgctbrough its state space or a set of
motion curves for each parameter over time, iggt), wheret is the time of the current frame.
Every animation technique reduces to specifying the staeestrajectory.

The basic animation algorithm is thefior t=t 1 to t e¢ng:  render(  g(t))

Modeling and animation are loosely coupled. Modeling dessrcontrol values and their actions.

Animation describes how to vary the control values. Theessanumber of animation techniques,
including the following:

User driven animation

— Keyframing
— Motion capture

Procedural animation

— Physical simulation
— Particle systems
— Crowd behaviors

Data-driven animation
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16.2 Keyframing

Keyframing is an animation technique where motion curves are intetpoléhrough states at
times,(€;:::; &), called keyframes, speci ed by a user.

Catmull-Rom splines are well suited for keyframe animatiocaose they pass through their con-
trol points.

Pros:

— Very expressive

— Animator has complete control over all motion parameters

Cons:
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— Very labor intensive
— Dif cult to create convincing physical realism

Uses:

— Potentially everything except complex physical phenonmsreh as smoke, water, or
re

16.3 Kinematics

Kinematics describe the properties of shape and motion independemysiqal forces that cause
motion. Kinematic techniques are used often in keyframnit}) an animator either setting joint
parameters explicitly witHorward kinematics or specifying a few key joint orientations and
having the rest computed automatically witkrerse kinematics

16.3.1 Forward Kinematics

With forward kinematics, a pointtis positioned by = f () where isastate vectdr 1; 2;::: )
specifying the position, orientation, and rotation of alhis.

ol

For the above example,= (1, cos( 1) + l,cos(1+ );lisin( 1)+ lxsin( 1+ ).

16.3.2 Inverse Kinematics

With inverse kinematics, a user speci es the position ofeéhd effectorp, and the algorithm has
to evaluate the required give p. Thatis, = f (p):

Usually, numerical methods are used to solve this problesrii B often nonlinear and either
underdetermined or overdetermined. A system is underdéated when there is not a unique
solution, such as when there are more equations than unlsnofrsystem is overdetermined
when it is inconsistent and has no solutions.

Extra constraints are necessary to obtain unique and stalolgons. For example, constraints may
be placed on the range of joint motion and the solution mayeheired to minimize the kinetic
energy of the system.
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16.4 Motion Capture

In motion capture, an actor has a number of small, round maidkéached to his or her body that
re ect light in frequency ranges that motion capture camexa speci cally designed to pick up.

(image from movement.nyu.edu)

With enough cameras, it is possible to reconstruct the iposiif the markers accurately in 3D.
In practice, this is a laborious process. Markers tend toidéem from cameras and 3D recon-
structions fail, requiring a user to manually x such droptuThe resulting motion curves are
often noisy, requiring yet more effort to clean up the motiata to more accurately match what
an animator wants.

Despite the labor involved, motion capture has become alpofchnique in the movie and game
industries, as it allows fairly accurate animations to eated from the motion of actors. However,
this is limited by the density of markers that can be placed single actor. Faces, for example,
are still very dif cult to convincingly reconstruct.
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Pros:
— Captures speci c style of real actors
Cons:

— Often not expressive enough
— Time consuming and expensive
— Dif cult to edit

Uses:

— Character animation
— Medicine, such as kinesiology and biomechanics

16.5 Physically-Based Animation

It is possible to simulate the physics of the natural worlge¢aerate realistic motions, interactions,
and deformationsDynamicsrely on the time evolution of a physical system in responderies.

Newton's second law of motion statess ma, wheref is force,m is mass, ana is acceleration.

If x(t) is the path of an object or point mass, thét) = = is velocity anda(t) = %4 = €x(

is acceleration. Forces and mass combine to determinecgaatieh, i.e. any change in motion.

In forward simulation or forward dynamics, we specify the initial values for position and ve-
locity, ﬁ(O) andv(0), and the forq:gs. Then we compuaét), v(t), x(t) wherea(t) = %
v(t) =, a(t)dt+ v(0), andx(t) = , v(t)dt+ x(0).

Forward simulation has the advantage of being reasonabfyteaimulate. However, a simulation
is often very sensitive to initial conditions, and it is aftdif cult to predict pathsx(t) without
running a simulation—in other words, control is hard.

With inverse dynamics constraints on a patk(t) are speci ed. Then we attempt to solve for the
forces required to produce the desired path. This techrigndoe very dif cult computationally.

Physically-based animation has the advantages of:
Realism,
Long simulations are easy to create,

Natural secondary effects such as wiggles, bending, and-sentaterials behave naturally,
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Interactions between objects are also natural.

The main disadvantage of physically-based animation isattieof control, which can be critical,
for example, when a complicated series of events needs todoleled or when an artist needs
precise control over elements in a scene.

Pros:
— Very realistic motion
Cons:

— Very slow
— Very dif cult to control
— Not expressive

Uses:

— Complex physical phenomena

16.5.1 Single 1D Spring-Mass System

Spring-mass systems are widely used to model basic physistdms. In a 1D spring(t) repre-
sents the position of mass, increasing downwards.

lx spring

mass

A spring has resting lengthand stiffnes«. Deformation force is linear in the difference from the
resting length. Hence, a spring's internal force, accaydanHooke's Law, if 5(t) = k(I  x(t)).

The external forces acting on a spring include gravity amftittion of the medium. That is,

f9=mgandfdt)= v(t)= = where isthe damping constant.

Hence, the total force acting on a spring {¢) = f S(t)+ f ¢+ f 9(t). Then we may usa(t) = %

with initial conditionsx(0) = X, andv(0) = v to nd the position, velocity, and acceleration of a
spring at a given time.
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16.5.2 3D Spring-Mass Systems

Mass-spring systems may be used to model approximationsr® complicated physical systems.
Rope or string may be modeled by placing a number of springgeedd, and cloth or rubber
sheets may be modeled by placing masses on a grid and corghadjacent masses by springs.

Let theith massm;, be at locatiorp; (t), with elements;(t), yi(t), z (t). Letl; denote the resting
length andk;; the stiffness of the spring between massasd; .

Theinternal force for mass is
SMH= ke PP

whereg; = I k p pk

Note:
Itis the case thdt$ (1) = 7 (t).

The net total internal force on a masis then X
fo(t) = f(t);

j2N;
whereN; is the set of indices of neighbors of mass

16.5.3 Simulation and Discretization

A common approach to discretizing over time in a physicaluation is to use a numerical ordi-
nary differential equation solver, such as the Runge-Kuttéhiod, with nite difference approxi-
mations to derivatives.

To nd an approximation taa(t), we choose a time incrementt so the solution is computed at
t; = it

The simplest approach is the use Euler time integration feithvard differences:
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Computesg (t) = fi(t)=m.
Updatevi(t + t)= v (t)+ tg(t).
Updatepi(t + t)= pi(t) + tvi(t).

16.5.4 Particle Systems

A particle system fakes passive dynamics to quickly rendergex systems such as re, owing
water, and sparks. A particle is a point in space with somecist®d parameters such as velocity,
time to live, color, or whatever else might be appropriatetfe given application. During a
simulation loop, particles are created by emitters thatrdeine their initial properties, and existing
particles are removed if their time to live has been exceedlkd physical rules of the system are
then applied to each of the remaining particles, and theyear@ered to the display. Particles are
usually rendered as at textures, but they may be renderedepiurally or with a small mesh as
well.

16.6 Behavioral Animation

Flocking behaviors

Particle systems don't have to model physics, since rulesheaarbitrarily speci ed. Individual
particles can be assigned rules that depend on their nesijo to the world and other particles,
effectively giving them behaviors that model group intéi@ts. To create particles that seem to
ock together, only three rules are necessary to simulapasgion between particles, alignment
of particle steering direction, and the cohesion of a grdypagticles.
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Particles that ock and steer around obstacles
More complicated rules of behavior can be designed to cbiaitge crowds of detailed characters
that would be nearly impossible to manually animate by hafalvever, it is dif cult to program

characters to handle all but simple tasks automaticallychSachniques are usually limited to
animating background characters in large crowds and cteisao games.

A crowd with rule-based behaviors

Pros:
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— Automatic animation
— Real-time generation

cons:

— Human behavior is dif cult to program

Uses:

— Crowds, ocks, game characters

16.7 Data-Driven Animation

Data-driven animation uses information captured from #a world, such as video or captured
motion data, to generate animation. The technique of vidgtutes nds points in a video se-
guence that are similar enough that a transition may be mattewt appearing unnatural to a
viewer, allowing for arbitrarily long and varied animatiémom video. A similar approach may
be taken to allow for arbitrary paths of motion for a 3D ch&aby automatically nding frames

in motion capture data or keyframed sequences that areasitaibther frames. An animator can
then trace out a path on the ground for a character to follow,the animation is automatically

generated from a database of motion.

Pros:

— Captures speci c style of real actors

— Very exible
— Can generate new motion in real-time

Cons:

— Requires good data, and possibly lots of it

Uses:

— Character animation
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